
UNIVERSITÄT BREMEN

BACHELOR THESIS

Plan Transformation for Autonomous Real
World Pick and Place Tasks

Author:
Arthur NIEDZWIECKI

Supervisor:
Prof. Michael BEETZ

Second Supervisor:
Prof. Johannes SCHÖNING

Advisor:
Gayane KAZHOYAN

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Institute for Artificial Intelligence
Computer Science

April 4, 2018

http://www.uni-bremen.de
http://ai.uni-bremen.de/
http://www.informatik.uni-bremen.de

iii

Declaration of Authorship
I, Arthur NIEDZWIECKI, declare that this thesis titled, “Plan Transformation for Au-
tonomous Real World Pick and Place Tasks” and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

UNIVERSITÄT BREMEN

Abstract
Faculty 3

Computer Science

Bachelor of Science

Plan Transformation for Autonomous Real World Pick and Place Tasks

by Arthur NIEDZWIECKI

For several centuries, computer scientists try to develop Artificial Intelligence for
robots, to make them behave more like human beings. By intensive planning they
try to mirror complex activities to be performed by machines. Today there is a huge
variety of devices to support household chores and robots to clean the environment
autonomously. Humanoid robots are developed to carry out even more compli-
cated tasks in the context of everyday activities. Inspired by human capabilities of
adapting to unknown environments, robots are taught to do the same by constantly
improving their activities through reconsidering their decisions. Plan-based robotics
focus on the design of tasks - from minute motions to extensive activities - consid-
ering misbehavior, changes of the environment, the robot’s current state and many
more, to create stable and reliable components for building even more complex ac-
tivities.

This thesis concentrates on investigating the behavior of a PR2 robot in a kitchen
environment, executing pick and place tasks. Collecting information about the robot’s
plans enables reasoning about how to improve its actions. By applying alterations
on the plans the programmer change the course of actions, trying to optimize the
robot’s overall performance. Defining rules for transformation, the robot can then
improve its task execution autonomously. My approach will demonstrate how to use
the CRAM architecture to ascertain valuable information about activities and how
they can be used for transformational planning of autonomous robots, performing
pick and place tasks in a kitchen environment.

HTTP://WWW.UNI-BREMEN.DE
http://fb3.uni-bremen.de
http://www.informatik.uni-bremen.de

vii

UNIVERSITÄT BREMEN

Zusammenfassung
Fachbereich 3

Informatik

Bachelor of Science

Plan-Transformation für Autonome, Natürliche Holen und Bringen Aufgaben

von Arthur NIEDZWIECKI

Über mehrere Jahrzehnte versuchen Wissenschaftler künstliche Intelligenz für
Roboter zu entwickeln, um ihr Verhalten menschlicher zu gestalten. Durch intensive
Planung versuchen sie komplexe Aktivitäten widerzuspiegeln, um sie von Robotern
ausführen zu lassen. Heute gibt es eine Vielzahl an Geräten, die im Haushalt helfen
und Roboter, welche die Umgebung säubern. Humanoide Roboter werden dazu en-
twickelt noch kompliziertere, alltägliche Aufgaben zu bewältigen. Angelehnt an der
menschlichen Fähigkeit sich an unbekannte Situationen anzupassen, wird Robotern
beigebracht ihre Aktionen, durch kontinuierliche Rekapitulation ihrer Tätigkeiten,
zu verbessern. Plan-basierte Robotik fokussiert die Entwicklung von Aufgaben -
von winzigen Bewegungen bis zu umfangreichen Aktivitäten - wobei Fehlverhal-
ten, Veränderung der Umwelt und des Roboters berücksichtigt werden, um durch
stabile und zuverlässige Komponenten komplexere Szenarien erschaffen zu können.

Diese Thesis konzentriert sich auf die Analyse des Verhaltens eines PR2 Robot-
ers, der in einer Küche diverse Gegenstände transportiert. Das Sammeln von In-
formationen über die Pläne des Roboter lässt darüber argumentieren, inwiefern die
Pläne zu verbessern sind. Durch Veränderung der Pläne passt der Programmierer
den Ablauf der Aktionen an, um zu versuchen das allgemeine Verhalten zu opti-
mieren. Indem Transformationsregeln definiert werden, kann der Roboter seine
Aufgabe selbstständig verfeinern. Mein Ansatz zeigt wie man in der CRAM Ar-
chitektur wertvolle Daten über Aktivitäten erheben kann und wie diese für Plan-
Transformation auf autonomen Robotern zu verwenden sind, die in einer Küche
Gegenstände transportieren.

HTTP://WWW.UNI-BREMEN.DE
http://fb3.uni-bremen.de
http://www.informatik.uni-bremen.de

ix

Contents

Declaration of Authorship iii

Abstract v

Zusammenfassung vii

1 Introduction 1
1.1 General Approach and Research Questions 2

1.1.1 Plans . 2
1.1.2 Plan Transformation . 3

1.2 Contributions . 3
1.3 Related Work . 3
1.4 Reader’s Guide . 5

2 Foundations 7
2.1 ROS . 7
2.2 CRAM . 7

2.2.1 Projection Environment . 8
2.2.2 Designators . 9
2.2.3 Process modules and atomic plans 12
2.2.4 Self-Recovering Plans . 13
2.2.5 CRAM Prolog Reasoning . 14
2.2.6 Execution Traces and the CRAM Task Tree 15

2.3 Transformational Planning . 18

3 Methods and Implementation 21
3.1 Task tree analysis, Prolog predicates and transformations 21

3.1.1 Scenarios . 21
3.1.2 Task tree analysis . 23
3.1.3 Transformations . 24
3.1.4 Applicability and input schema 28

3.2 Generic CRAM plan transformation framework 31

4 Experimental Evaluation 33
4.1 Evaluation of Transformation Experiments 33
4.2 Evaluation Summary . 39

5 Conclusion 41
5.1 Summary . 41
5.2 Discussion . 41
5.3 Recommendations on Future Work . 42

Bibliography 49

1

Chapter 1

Introduction

During the last years, the interest in autonomous robots became successively bigger.
The idea of robots being aware of their surroundings, doing household chores with
just a few instructions, has been but a dream for a long time. The developments of
useful devices in the recent past aimed for making our daily routine more comfort-
able. Todays technology infers the intention of the human operating it and helps
the operator in various areas, like customizable Apps, auto-completion in instant
messengers or health monitoring in smart watches. Nevertheless, those devices are
designed to solve only a limited set of problems, provide only a few features each
and, in combination, improve our living in multiple ways. But a robot capable of
a huge variety of actions executable with as few help as possible, is a completely
different scale of complexity. Household robots as we know them nowadays can
vacuum the floor, wash the dishes or help preparing a meal, like for instance the
ThermoMix1. One single robot is not (yet) capable of doing all this tasks, but multi-
ple research endeavours already try to fill this gap, using robots like Willow Garage’s
PR2 (Wyrobek et al., 2008) or TUM-Rosie (Beetz et al., 2010). Those robots provide
extensive possibilities for implementing complex tasks, e.g. doing dishes, cooking
sandwiches, pancakes or popcorn, doing laundry, folding towels and many more
(Maitin-Shepard et al., 2010; Beetz et al., 2011).

Autonomous robots doing every day tasks have a hard time doing human chores
without being advised, especially when the robot is lacking detailed knowledge
about its environment. Ingredients and tools may be spread around a kitchen with-
out the robot knowing their exact position. This may get even more challenging
when changing the robot’s environment and expecting it to just do as well as pre-
viously. Thus, can a robot be an autonomously acting entity, if you have to tell it
explicitly what to do, every time? Industrial robots can do the same motion over
and over again, without reasoning about the things they do. A programmer wrote
an explicit, static manual for such a robot, letting it repeat this task, while prohibiting
any deviation. But allowing deviation is the key to autonomy.

An autonomous robot’s action should not be constructed as a fix, discrete opera-
tion, but in the most abstract way possible. For implementing a robot’s autonomy it
is highly recommended to phrase tasks in abstract descriptions, supported by cog-
nitive architectures. Such an architecture may be TRANER (Müller, 2008), which
is based on McDermotts Reactive Plan Language (Mcdermott, 1993), or the more
recent CRAM framework (Mösenlechner, 2016). They both have in common, that
actions are written as a plan, which can be executed by describing what the robot
has to do. Those plans contain descriptions of lower level actions, which execute
their respective plan, which itself may contain descriptions, and so on. In the end, a
robot’s action as a whole can be described as a hierarchical tree of plans, whose leafs
consist of general, atomic motions, executable by the robot. Other approaches use

1https://thermomix.vorwerk.de/home/

https://thermomix.vorwerk.de/home/

2 Chapter 1. Introduction

active reaction on the current situation (Beetz, 2013), implementing continuous rea-
soning about cognitive inputs, constantly ready to decide between various actions
during execution.

Plan transformation is a field of plan based robotics, that aims for improving
robots’ activities. Much research has been made towards reactive plan transforma-
tion (Beetz, 2013; Kruse and Kirsch, 2010; Fedrizzi et al., 2009; Beetz, 1992; Beetz,
2002), which basically includes taking an alternative plan upon encountering a fail-
ure or suitable occasion, and replacing the original one with the alternative. Oth-
ers investigated a whole library of plans, which they transformed into new plans
(Müller, 2008). They improved sequences of actions to be more efficient depend-
ing on the robot’s environment. Analyzing plans after execution provides insights
about how the transformed plans have improved the robot’s actions. Still, trans-
forming plans after execution is scarcely pursued since it requires an already stable
set of flexible plans used to design scenarios executable by robots. By exploiting
broad execution traces it enables extensive reasoning possibilities and equivalently
powerful transformation mechanisms.

1.1 General Approach and Research Questions

During my work at the Institute for Artificial Intelligence Professor Beetz raised my
interest in plan transformation and I wondered, if similar mechanics would allow
transformation of CRAM plans as well. CRAM provides a physics simulator which
allows collision detection and visualization of plans during execution, I can use the
descriptive arguments to construct self-recovering plans, which maintain stability
within plans, and there is a powerful logging mechanism, which allows reasoning
on the plans after execution. Using these tools I want to investigate to what extent I
can apply the ideas from (Müller, 2008) in the CRAM context.

1.1.1 Plans

In plan based robotics a plan represents a robot’s action in an abstract way. It con-
tains a sequence of descriptions, that are evaluated to other plans. Furthermore,
CRAM plans can be stabilized by handling failures of their underlying actions, mak-
ing them more flexible.

1 (def−cram−func t ion navigate (? l o c a t i o n−des ignator)
2 (with−re t ry−counters ((nav−r e t r i e s 3))
3 (with−f a i l u r e−handling
4 ((navigat ion−low−l e v e l−f a i l u r e (e)
5 (do−r e t r y nav−r e t r i e s
6 (r e t r y))))
7 (perform
8 (a motion (type going) (t a r g e t ? l o c a t i o n−des ignator)))
9 (on−event

10 (make−i n s t a n c e ’ cram−plan−occasions−events : robot−s t a t e−changed)))))

This is a plan for navigating to a specific location. In lines 7-8 the robot executes
a navigation to the desired target, but if this movement fails, it is caught in line 4.
Lines 5-6 will be executed when navigation fails and retries the movement up to 3
times, because a retry counter is set in line 2. This is just a simple example and the
failure handling body can be filled with other actions, for instance, trying to stabilize
the robot’s state in the environment.

1.2. Contributions 3

1.1.2 Plan Transformation

Transformational planning allows to improve an action’s plan, by analyzing what
the robot did, and how. Using plan transformation on existing plans lets a robot
improve his actions by himself. I want to test this in different scenarios of pick and
place tasks. The vision is, that a generic plan, designed to be suitable for execution in
various scenarios, can be tailored to perform better in specific environments. Ana-
lyzing what the robot did, searching for specific patterns in the logging data, reveals
in which ways the plans’ structure can be improved. Partial improvements of the
plan are written in transformation rules, which take the data from the analysis to
add, remove or change a set of plans.

Müller says, that transformation rules and pattern analysis can be generalized in
the following way:

applicability
input schema

transformation
↓

output plan

Applicability checks if a transformation is suitable for the plan at hand, input schema
is what the transformations’ input parameters are, the transformation accounts for
altering the plan, returning the output plan eventually. Following this pattern I want
to implement algorithms to check the former two, and apply the transformation on
different pick and place scenarios. Later the transformations are evaluated to see,
how well they improve the original plans.

1.2 Contributions

This thesis concentrates on enhancing human-written tasks for autonomous robots,
narrowed down to fetching and delivering objects in a household environment. I
want to find out in which ways such pick and place tasks can be modified to increase
the robots performance and still achieving the same goal given by the writer. I will
provide an overview on how to design and use transformations on the extensive
logging trace of CRAM. For this logging trace I will design general predicates to de-
termine applicability of transformations, to show how to traverse huge data sets, as
has been an obstacle in previous researches on plan transformation after execution.
To overcome this hurdle I will implement an algorithm to minimize resources while
searching for patterns, suitable for transformations. The impact of transformation
is determined by evaluating the outcome of transformation rules on pick and place
scenarios, using the enhanced reasoning mechanism for gathering interesting data
from the simulation. For further research I will implement a generic framework,
that can easily include transformations and reasoning predicates into the process of
testing plans and possible transformations.

1.3 Related Work

Multiple research groups investigated the possibilities of transformational planning
but most of them observed only changing execution for failure handling and avoid-
ance. Introducing the Reactive Planning Language (RPL) (Mcdermott, 1993) and
sophisticating reasoning techniques via Prolog, as well as using terms consisting

4 Chapter 1. Introduction

of symbolic and subsymbolic descriptions, plan transformation gained even more
powerful possibilities.

The TRANER (TRAnsformational PlanNER for Everyday Activity) introduced
by Armin Müller (Müller, 2008) is amongst the broader approaches on transforma-
tional planning towards offline plan improvement. Using RPL (Reactive Plan Lan-
guage) for plan construction and transformation he operates on flexible and reliable
plans to make autonomous robots achieve successful action execution in every-day
tasks like household chores. With the inference techniques of CRAM (Cognitive
Robot Abstract Machine) (Mösenlechner, 2016) the design of plans improved. The
CRAM architecture includes tools to ensure reliability, stability and flexibility, as
well as the CRAM Prolog predicates for execution trace analysis. Müller’s theories
about transformational planning and Mösenlechner’s architecture are the main ac-
complishments this thesis is oriented at.

TRANER is most influenced by McDermott’s XFRM planner (McDermott, 1992)
which is based on transformational improvement of an agent in the grid world. In
Michael Beetz’ theories on transformational planning (Beetz, 1992) you can see fur-
ther development through RPL and reasoning over semantic relationships. Using
McDermott’s foundation, Michael Beetz (Beetz and McDermott, 1997; Beetz, 2000;
Beetz, 2001) applies transformational planning techniques on autonomous robots
in every-day activities. Also using Müller’s TRANER, Mortz Tenorth (Tenorth and
Beetz, 2010) demonstrates optimization of pick and place tasks in a kitchen environ-
ment.

Another example of transformational planning for mobile manipulation is given
by Fedrizzi and Mösenlechner (Fedrizzi et al., 2009). They use ARPLACE which re-
solves descriptions of locations, rather than using fixed poses, to argue about spacial
navigation of the robot. Those descriptions were further developed by Mösenlech-
ner into location designators (Mösenlechner, 2016), being used for decision making
in transformation rules in this thesis. Reasoning about execution traces was dis-
cussed by Demmel and Mösenlechner as well (Mösenlechner, Demmel, and Beetz,
2010) before Mösenlechner enhanced and broadened it for his PHD thesis (Mösen-
lechner, 2016). Alongside descriptive locations Mösenlechner introduced other des-
ignators in his work (Mösenlechner, 2016), which are in constant development and
enhanced by Gayane Kazhoyan (Kazhoyan and Beetz, 2017).

Sussman’s Hacker (Sussman, 1973; Sussman, 1975) concentrates on creating and
transforming reliable plans to achieve a specific goal using lower-level plans, which
are eventually resolved to atomic actions. My simulation uses the bullet physics
engine (Mösenlechner and Beetz, 2011; Mösenlechner and Beetz, 2013) to find flaws
in decision-making and possible errors in manipulation, which seems closer to real
world simulation than the Hacker system.

There are more transformational planners like Chef (Hammond, 1990) and Gor-
dious (Simmons, 1988). Chef and Gordious create sequential plans and mainly cover
failure handling. The CRAM execution trace on the other hand contains a hierarchi-
cal, easily traversable task tree. Also the transformations presented in this thesis
attack optimization in movement of already reliable plans rather that failure han-
dling or avoidance, since most of failure handling is done in CRAM plans already.
More of the type, by using hierarchical structures, is the work of Bothelho and Alami
(Bothelho and Alami, 2000), in which they explain how to enhance plans in hierar-
chical, partial order.

An interesting research on reactive, opportunistic action selection is done by
Kruse and Kirsch (Kruse and Kirsch, 2010), where the decision to execute an action

1.4. Reader’s Guide 5

depends on the detection of opportunities. If an opportunity fits the preconditions of
a plan to execute, it may be executed. Their work is based on reasoning through RPL
and decision-making is processed during runtime, which differs from my approach
in offline reasoning and transformation, but is similar to preconditions of applying
a transformation rule.

Following the same idea, (Beetz et al., 2012) execute their plans based on oc-
casions, represented by fluents that describe complex boolean expressions. Their
flexible plans are mainly designed for reactive navigation adaptation in ARPlace but
the reasoning techniques are similar to the ones used in this thesis.

The high-level distributed architecture HiDDeN (Gateau, Lesire, and Barbier,
2013) provides reparation of plans by analysis of a hierarchical decomposition of
the robots’ tasks. Alternative repairing solutions for subtasks need to be defined
a prior, which will then replace the previous, malfunctioning subtask. Like in the
CRAM execution trace(Mösenlechner, Demmel, and Beetz, 2010) they rely on ob-
serving a task tree, but in contrast to their transformations the transformation rules
described in this thesis observe a collaboration of tasks at a higher level and apply
changes upon multiple subtasks within one transformation.

1.4 Reader’s Guide

This thesis describes how plan transformation can be realized in the CRAM archi-
tecture, specialized on pick and place tasks. It will explain how to collect the infor-
mation needed in transformations and how they affect the program’s structure.

Chapter 2 gives an overview of the technologies used for implementing plan trans-
formation. It contains basic knowledge about ROS, CRAM and its components, as
well as the CRAM functionality for plan transformation before and after execution.

Chapter 3 explains my implementation of CRAM specific plan transformation, rea-
soning over an extensive log using a declarative, logical language. Furthermore, it
show additional implementations and difficulties to overcome, in order to achieve
sophisticated plan transformation.

Chapter 4 analyzes in which ways the transformations explained in Chapter 3 have
impact on pick and place scenarios and to what extent they improved or worsened
execution of the scenarios.

Chapter 5 concludes what insight has been gained while implementing and eval-
uating the transformations. Also it discusses future work on transformations in the
CRAM architecture.

7

Chapter 2

Foundations

In this chapter I want to talk about the Robot Operatin System (ROS), the Cognitive
Robot Abstract Machine (CRAM) published in (Mösenlechner, 2016), and some ideas
on plan transformation from (Müller, 2008). The CRAM architecture implements
symbolic, discriptive plan design and failure handling mechanisms and Prolog rea-
soning techniques to retrieve information from extensive logging traces and knowl-
edgebases. A particular log will be seved by the CRAM execution trace, containing
most of the information about executed plans in a scenario, represented as an offline
structure. Within this execution trace I operate on a hierarchical represantation of all
plans having bee executed in the scenario under inverstigation. Furthermore, I will
introduce the simulation environment (bullet world) where the execution of plans
will be visualized and tested.

2.1 ROS

The Robot Operating System (ROS1) (Quigley et al., 2009) is a dynamic framework
for writing programs for robots. It enables communication between multiple, ex-
changable nodes where each has a specific task to do and in collaboration can achieve
a greater goal. The main idea for ROS was to distribute the implementation of robust
robot programs. Using ROS gives the ability to outsource programs into seperate
processes. ROS is used in this thesis for the simulation environment, representing
the robot and kitchen and further reasoning frameworks like the semantic map.

2.2 CRAM

CRAM (Cognitive Robot Abstract Machine) is a computational, cognitive frame-
work written in Lisp. It combines a high-level descriptive language for action plan-
ning of autonomous robots and sophisticated reasoning mechanisms. This provides
the programmer the ability to write plans in an absract way, without concern about
the underlying hardware components and sensors, nor the knowledge about dis-
crete information in the environment.
Lacking, or ignoring this low-level information, the programmer can use CRAM
prolog reasoning queries to get insight into What does the robot know?, Does he see that
object? or Why did he decide to do this?. This kind of reasoning can be used at run-
time as well as after execution. Reasoning after execution is called offline reasoning.
Executing plans creates an execution trace, which is like an extensive log of all the
memory the robot has about the actions he executed previously.
The bullet world projection environment is a simulator in which the robot’s move-
ments and cognitive processes can be visualized (figure 2.1) and tested. It provides

1http://www.ros.org/about-ros/

8 Chapter 2. Foundations

FIGURE 2.1: Robot and kitchen simulated in the bullet environment.

FIGURE 2.2: The kitchen and PR2 robot in the Institute for Artificial
Intelligence Bremen.

the programmer with convenient tools to spawn and move objects, manipulation of
robots and the environment, as well as gravitational simulation and reasoning about
collisions.

2.2.1 Projection Environment

The bullet environment is a multi-purpose lightweight simulator. A Lisp wrapper
for the Bullet simulator2 was developed in (Mösenlechner and Beetz, 2011; Mösen-
lechner and Beetz, 2013) to provide visualization of CRAM plans during their exe-
cution. The wrapper allows us to spawn customized meshes of objects, and robots
in a semantic format or Unified Robot Description Format (URDF). I use this to set
up the kitchen environment, the PR2 robot and design scenes consisting of spawned
objects, placed at various locations, depending on the tasks the robot is told to per-
form.
What is the most important feature of the simulation is that I can temporally try
out a variety of motions in an instant to check, if it would lead to unwanted be-
haviour. Via an inverse kinematic (IK) solver I can decide to keep or reject the robots

2https://pybullet.org/wordpress/

https://pybullet.org/wordpress/

2.2. CRAM 9

movement if it would lead to an undesired outcome. Taking the action of placing an
object as an example, an undesired outcome would be that the robot collides with
the environment or the movement, when releasing the object and simulating gravity
afterwards, would result in an unstable state of the object or environment. Such con-
ditions can be reasoned upon immediatly and the motion revoked, when rendered
malicious, usually retried with a slight alteration in movement. Being more specfic,
the movement is executed with a different solution from the IK solver. Retrying
an action with slight adjustments is also implemented within self recovering plans,
which are explained in section 2.2.4. For a detailed hands-on tutorial for manipulat-
ing the CRAM bullet world, the IAI provides insightful tutorials3. In this section I
will only mention some specific tools more frequently used in this thesis. The pack-
ages btr and btr-utils (nickname for cram-bullet-reasoning) provide all the necessary
functionality to comprehend and manipulate the simulated world programatically.
To retreive information about the world I can inspect the btr:*current-bullet-world*
object.
Since pick and place tasks concentrate on the transition of objects I need to gain ac-
cess to their simulated representation. I can do this with (btr:object btr:*current-bullet-
world* object-name) where object-name is to be provided as a symbol. I use keywords,
case-insensitive symbols, for object names throughout the whole implementation to
encourage absolutely distiguishable terminology.
Simulated objects always contain a name, type, the world they are in and a rigid
body. The rigid body contains the bounding box of the objects mesh. Deeper de-
tails, like poses of bounding boxes, can only be investigated through the C-interface,
which makes debugging complicated but protects the programmer from getting lost
in unnecessary details about the bullet projection environment. The btr package does
not only provide us most of the functionality I need, it also returns all information
almost4 in first class representation. Changing an objects parameter is immediately
resolved in the simulation. Alongside the Lisp REPL (Read-Eval-Print-Loop), hav-
ing this kind of a responsive simulation gives programmers the ability to rapidly
prototype new plans.

2.2.2 Designators

Designators are at the core of abstract plan construction. They consist of a symbolic
and subsymbolic description of what you want to express, be it a locations, actions
or objects. The symbols used within a designator are then resolved by the prolog
engine into plans, which contain other designators. This lets us design command
descriptions for the robot in a hierarcical way, building up a tree of plans which can
be reasoned about, again with Prolog (see 2.2.5). When costructing a designator keep
in mind, that they are resolved by the CRAM prolog module, which supports most
of SWI-Prologs syntax. Value holding variables used within designator instantiation
must be prefixed with a question mark (?) to let the prolog interpreter know, that
it has to handle the variable’s value instead of using it as a symbol, more specific, a
keyword. Lets look into the different kinds of designators that will be of use for us.

Location Designators are descriptions of a point, an area or a somehow relative
spacial position. You can describe the location of a pose like this

3http://cram-system.org/tutorials/advanced/bullet_world
4Lisp getter-functions like pose do not actually read slot values of an object but request them from

the C-Interface instead. Changing object slot-values is also wrapped to eventually interact with the
low-level interface, nervertheless it feels like working directly on the simulated object.

http://cram-system.org/tutorials/advanced/bullet_world

10 Chapter 2. Foundations

1 (a l o c a t i o n
2 (pose ?my−pose))

where ?my-pose is the variable name of a cl-tf:pose-stamped object. cl-tf is the Lisp
package that contains all pose transformation logic I use throughout the implemen-
tation. To create a location designator evaluated to the point (1 1 1) and identity ro-
tation (0 0 0 1) you need to first create the pose-stamped object. Since I use stamped
poses instead of normal poses, the constructor needs an origin frame, to which the
pose is relative to, and a timestamp, which would normally be set when the pose is
created during plan execution.

1 (l e t ((?my−pose (c l−t f : make−pose−stamped
2 "map" 0 . 0
3 (c l−t f : make−3d−vector 1 . 0 1 . 0 1 . 0)
4 (c l−t f : make−i d e n t i t y−r o t a t i o n))))
5 (a l o c a t i o n
6 (pose ?my−pose)))

You see that, even if designators are written in descriptive symbolic notation, they
can be hard-coded, although straight-forward declarations like these are not very
welcome in the dynamic plans I want to have. To make it more dynamic I can assign
a location to the origin of an object.

1 (a l o c a t i o n
2 (ob j (an o b j e c t
3 (type : cup))))

Since I use another designator within the location designator, the object designator
needs to be resolved before the location can point to a descrete pose. As soon as the
described object is percieved, the location can be resolved to the objects position.

Another form of location can be described using areas. This form uses names of
components from the environment to create a set of possible locations that each fit
to the described components location.

1 (a l o c a t i o n
2 (on " CounterTop ")
3 (name " i a i _ k i t c h e n _ s i n k _ a r e a _ c o u n t e r _ t o p "))

Here I want to create an area of possible locations all fit to the description, namely
the surface of the sink area in the kitchen.

Object Designators cover the description of objects in the world. As already shown
in an example for location designators, an object can simply consist of its type.

1 (an o b j e c t
2 (type : cup))

For the manipulation of an object this description does completely suffice my needs.
By perceiving any object of the given type the bullet world resolves the object des-
ignator, given that an object of this type is found. The object designator then gets a
name, stamped pose, color etc. which can be used for further manipulation and rea-
soning. Through the course of execution time the pose assigned to the object stays
the same at this specific timestamp. If the object is moved, the designator changes
its pose value, adding timestamps, which allows us to reason about the position of
objects at various times.

Action Designators can describe any series of movement the robot may be able to
execute. The latest design of action designators can be seen in (Kazhoyan and Beetz,
2017). To perceive an object, for example, I will use the following action

2.2. CRAM 11

FIGURE 2.3: The robot looks at the cup after searching for it.

1 (an a c t i o n
2 (type d e t e c t i n g)
3 (o b j e c t (an o b j e c t
4 (type : cup))))

which tries to find an object of type :cup in the robots current field of vision. When
this action is successful it returns the resolved object with subsymbolic values. Be-
fore I can see an object I first need to navigate into the right position with

1 (an a c t i o n
2 (type navigat ing)
3 (l o c a t i o n ? l o c))

where ?loc again is a location designator. Combining these two actions and the one
to move the head, which is not worth mentioning for my purposes, you can describe
a more sophisticated plan that searches for an object in the robots environment.

1 (desig : an a c t i o n
2 (type searching)
3 (o b j e c t (an o b j e c t
4 (type : cup)))
5 (l o c a t i o n (a l o c a t i o n
6 (on " CounterTop ")
7 (name " i a i _ k i t c h e n _ s i n k _ a r e a _ c o u n t e r _ t o p ")))))

Searching for an object requires the objects description and a probable location to
look for it. After executing the searching action the robot should be in the state
shown in figure 2.3. You can see the generated area of locations for navigating near
the location provided, a gaussian distributed area of promising locations to navigate
to. Having found the desired object the robot can now pick it up with his grippers.
In combination with the searching action I have an action of type fetching in my
repertoire, that uses the same parameters as the searching action.

1 (an a c t i o n
2 (type f e t c h i n g)
3 (o b j e c t ? ob j)
4 (l o c a t i o n ? l o c))

Fetching an object consists of navigating to, looking at and detecting the object as
well as moving the arms in a way, that the gripper at the end of an arm can securely
grasp the object while preventing collision with the surface and other obstacles. The
result of this action is shown in figure 2.4 How such a plan is designed in detail will
be explained in section 2.2.4.
Now with the object in out gripper I can deliver it to an other location. Delivering an

12 Chapter 2. Foundations

FIGURE 2.4: The robot fetches the cup from the table with his right
arm.

object contains navigating to the depot location and putting the object down, again
without causing any collision with the environment or other objects.

1 (an a c t i o n
2 (type d e l i v e r i n g)
3 (o b j e c t ? ob j)
4 (t a r g e t ? l o c))

All those actions combined can be wrapped up in a transportation action that first
tries to fetch an object to then deliver it onto the given location.

1 (an a c t i o n
2 (type t r a n s p o r t i n g)
3 (o b j e c t ? ob j)
4 (l o c a t i o n ? fe tch ing−l o c)
5 (t a r g e t ? de l iver ing−l o c))

Until now you have seen all important actions to write simple pick and place plans.
Simply moving the robots base and manipulating his joints does not make a plan
yet, I need some mechanisms for recovering the robots state if he fails to execute a
task properly. As can be seen the commands are written in a way of controlling a
robot without any definition of robot-specific code.

2.2.3 Process modules and atomic plans

Resolving action designators to plans, those to action designators and again to plans
eventually comes to an end, when a designator describes an atomic motion. Those
motions will only further be resolved to process modules. Motion designators be-
ing resolved to process modules is the border between descriptive planning and
robot specific execution of code. Everything above is completely independent of the
underlying hardware, hence process modules can be seen as an interface between
planning and hardware related code execution.
Changing the plans and related actions above can be executed regardless of what is
beyond process modules, as long as the process modules resolve to useful code. Due
to this border I can freely create, change and revise plans in the above structures. All
the designators and plans explained in section 2.2.2 have been tested in real world
scenarios, using the PR2 robot in the kitchen environment of the Institute for Arti-
ficial Intelligence Bremen. Exchanging just the lowest level atomic plans, that are
usually used in the live demo, with functions executed in a simulation, I can test the
higher level plans in an environment close to the real world robot.

2.2. CRAM 13

2.2.4 Self-Recovering Plans

Self recovering plans have been an important field in transformational planning for
a while now (Hammond, 1990; McDermott, 1992; Beetz and McDermott, 1997; Liber-
atore, 1998; Müller, 2008; Gateau, Lesire, and Barbier, 2013). In CRAM plan recovery
behaves like catching and handling an exception in other programming structures,
only that in CRAM plans it is the failure of a plan that is caught and handling a
failure consists of actions that try to stabilize the robot’s and environment’s situa-
tion. This recovery prepares the robot for retrying the action that previously failed.
In a way this recovery mechanism can already be called plan transformation, since
the execution of such a plan generates non-deterministic behavior and changes its
sequence of actions by adding and changing tasks during execution. Although the
course of additional action may differ in each execution, the plan itself stays the
same. This means, when a plan is executed successfully, the outcome of the plan
would leave the environment always in the same state, for example, an action for
transporting the object O from location A to B, at the end of the action the object O
should be at location B, regardless of how often or in which ways the plan has been
recovered, provided the plan terminates successfully after all.
Besides catching and handling a failure, I can set how many times a plan should be
re-executed after failure handling to prevent the scene from life-locking. The macro
for using retries is called cpl:with-retry-counters ((counter n)). Catching failures is done
with the macro cpl:with-failure-handling ((failure-class (e))) &body), where the plan(s)
to catch failures from is executed in the &body. Let’s take a reduced version of the
searching plan as an example. The upper half implements handling failures, at the
bottom you can see the plans executed.

1 (cpl : def−cram−func t ion searching−f o r (? o b j e c t−des ignator
2 ? search−l o c a t i o n)
3
4 (cpl : with−re t ry−counters ((attempts 5))
5 (cpl : with−f a i l u r e−handling
6 ; ; BEGIN handling f a i l u r e .
7 ((common−f a i l : o b j e c t−not−found−o b j e c t (e)
8 ; ; P r i n t e r r o r .
9 (r o s l i s p : ros−warn (pp−plans search−for−o b j e c t) "~ e " e)

10 ; ; Retry i f attempty l e f t .
11 (cpl : do−r e t r y attempts
12 ; ; Try next searching l o c a t i o n .
13 (handler−case
14 ; ; Check next navigat ion s o l u t i o n .
15 (s e t f ? search−l o c a t i o n (desig : next−s o l u t i o n ? search−l o c a t i o n))
16 ; ; I f none a v a i l a b l e throw e r r o r to s i g n a l higher l e v e l plan .
17 (desig : designator−e r r o r ()
18 (r o s l i s p : ros−warn (pp−plans search−for−o b j e c t)
19 " Designator cannot be resolved : ~a . Propagating up . " e)
20 (cpl : f a i l ’common−f a i l : o b j e c t−nowhere−to−be−found)))
21 (i f ? search−l o c a t i o n
22 ; ; Retry search with new l o c a t i o n i f a v a i l a b l e .
23 (cpl : r e t r y)
24 ; ; Throw e r r o r i f no a l t e r n a t i v e l o c a t i o n i s found .
25 (cpl : f a i l ’common−f a i l : o b j e c t−nowhere−to−be−found))
26 ; ; I f attempts and l o c a t i o n s are out , throw e r r o r .
27 (cpl : f a i l ’common−f a i l : o b j e c t−nowhere−to−be−found))))
28 ; ; END handling f a i l u r e .
29
30 ; ; BEGIN a c t u a l plan execut ion .
31 ; ; Prepare (new) search l o c a t i o n from f a i l u r e handling .
32 (l e t ∗ ((? pose−search−l o c (desig : r e f e r e n c e ? search−l o c a t i o n))
33 (? nav−l o c a t i o n
34 (desig : a l o c a t i o n
35 (v i s i b l e−f o r pr2)
36 (l o c a t i o n (desig : a l o c a t i o n
37 (pose ? pose−search−l o c))))))

14 Chapter 2. Foundations

38 ; ; Navigate to (new) l o c a t i o n .
39 (exe : perform (desig : an a c t i o n
40 (type navigat ing)
41 (l o c a t i o n ?nav−l o c a t i o n)))
42 ; ; Look at (new) t a r g e t pose .
43 (exe : perform
44 (desig : an a c t i o n
45 (type looking)
46 (t a r g e t (desig : a l o c a t i o n
47 (pose ? pose−search−l o c))))))
48
49 ; ; Detect ing the desired o b j e c t .
50 (exe : perform (desig : an a c t i o n
51 (type d e t e c t i n g)
52 (o b j e c t ? o b j e c t−des ignator)))
53 ; ; END a c t u a l plan execut ion
54)))

The lines 4 to 28 implement handling the failure object-not-found, while 30 to 52 con-
tain the actual plan. First I want to execute the plan, in which I navigate to a location
(39-41), where the PR2 robot can see the provided search location. After navigating
the robot should look at this searching-pose (43-47), where the robot tries to detect
any object described in ?object-designator (50-52). Navigating and looking are sepa-
rate plans, containing failure handling as well. But what if no such object could be
found? Within detecting an object a failure will be thrown, which is caught in the
upper section of my searching plan.
To recover from this failure, I request the next solution of my ?search-location desig-
nator (15), an alternative position and point of attention should be gained. If there
is any (13 & 21-26), try the plan again (23), but only if it did not exceed the retry
counter yet (4 & 11 & 27).

Besides handling failures it is important for self-recovering plans to be as indepen-
dent of other plans as possible. Using plans within plans requires a certain amount
of trust in their reliability, which is provided by handling failures and recovery
mechanism. Looking at an object, for example, sometimes requires opening drawers
and other containers, clearing occlusions by other objects etc. The more careful those
actions are designed, the greater their independence and reliability. Independence
is among the most important prerequisites when reasoning over and transforming
plans in a larger scale, as will be discussed later in this thesis.

2.2.5 CRAM Prolog Reasoning

Prolog is a programming language designed for querying knowledge bases which
contain inference rules. CRAM Prolog is a primitive Prolog interpreter written in
Common-Lisp, inspired by the SWI-Prolog dialect. It was implemented to gain the
abilities of Prolog in the CRAM context, to be able to reason about knowledge bases
most commonly provided by KnowRob (Tenorth and Beetz, 2009) knowledge repre-
sentations. Using CRAM Prolog for parsing semantic contexts lets us reason about
my extensive log, the execution trace (2.2.6), and operate the projection environment
(2.2.1). Querying information via Prolog always returns a lazy associative list of
solutions that fit the requests predicate, hence locations resolved from designators
might very well be an infinite list of possible locations that all match the description
provided. A lazy list is like a normal list, but does only compute every element as
soon it is needed. In some cases I only need the first element of a list, and to avoid
unnecessary computation, I can easily get the head of such a list without calculating

2.2. CRAM 15

each element. I can use the Lisp command car or the CRAM Prolog command lazy-
car to access the head of a lazy list, or compute the next element with lazy-cdr. The
Lisp command cdr usually returns the tail of a list, namely the whole list without
the first element. I can also force the a lazy list to calculate and return all elements
with the Prolog command force-ll. How predicates look like in detail are explained
in their respective sections.

2.2.6 Execution Traces and the CRAM Task Tree

The CRAM execution trace can be seen as a large scale logging framework, contain-
ing monitored data in first class representation. It contains the CRAM task tree, a
hierarchical structure of all executed plans and their subplans, including the param-
eters used during execution, their current status and outcome. Per definition of trees
the task tree is free of directed or undirected cycles. Each node has only one parent
where parent and node must differ. Also each node can be reached from the root
node.
Online traces enable programmers to read and adjust plans during execution. In-
vestigation of failures after execution can be done by traversing the task tree and
checking what the robot was thinking when executing a specific task. To construct
such a task tree, plans must be executed from within a named cram-top-level plan5.

1 (cpl : def−top−l e v e l−cram−func t ion my−top−l e v e l−plan ()
2 (exe : perform some−a c t i o n)
3 (exe : perform some−other−a c t i o n))

Here my-top-level-plan will be the root node of the task tree, some-action and some-
other-action are resolved to cram-plans, being direct children of the root plan. The
runtime object representing an executable plan is called a task. Executing the top-
level task generates the task tree, attaching subplans as a child to the higher-level
plan, spanning up the previously mentioned task hierarchy. Tasks contain a signifi-
cant amount of information:

1 (d e f s t r u c t task−t ree−node
2 (code n i l)
3 (code−replacements (l i s t))
4 (parent n i l)
5 (ch i ldren n i l)
6 (path n i l)
7 (lock (sb−thread : make−mutex)))

Here you can see that a task-tree node contains not only a list of children, but also a
link to its parent. The path makes it easy to find a specific task in the tree. The lock
slot determines in which state the task currently is. For representing the code of a
task there is another struct:

1 (d e f s t r u c t code
2 sexp
3 funct ion
4 task
5 parameters)

This struct contains an S-expression (symbolic expression) of the plan executed. The
function is the reference to the actual Lisp function. The task slot contains the func-
tion and parameters, as well as further, negligible information.
So far the code-replacement slot of a task-tree node has not been mentioned, for this
is the most important feature for plan transformation. This slot can be filled with a
list of function references, which are executed instead of the original function. When

5You can run anonymous top-level plans as well, but reasoning over the trace afterwards is not
recommended if any possible, and transformation of such a task-tree not purposeful at all.

16 Chapter 2. Foundations

executing the top-level plan with his task-tree already built, each task-tree node is
checked, whether the code-replacements slot is filled, and if so, the contained func-
tion reference is executed instead of the original tasks code, while still preserving
all information of the old task execution. If a programmer would clear a tasks code-
replacements slot the original plan represented by this task is executed again, without
any trace of the replacements. Adding replacements to nodes do not even change
their path or add new tasks to the task-tree. Issues related to this beaviour will be
discussed in section 5.2.
To gain access to the task-tree I use the cpl and cpl-impl package (cram-language, cram-
language-implementation).

1 (cpl : get−top−l e v e l−task−t r e e ’my−top−l e v e l−plan)

Through the SBCL inspector I can investigate the retrieved object and traverse the
task-tree by hand. But there are way better tools that fit my purpose. To identify
specific tasks in the task tree, (Mösenlechner, 2016) implemented some useful predi-
cates. They were designed to detect tasks and their designator’s properties (see sec-
tion 2.2.2) in the CRAM task tree. Via CRAM Prolog I can reason about the content
of the task tree without having to traverse it all the way. Lets look at the following
top-level plan, transporting three objects from one location to the pose (1 1 1) with
identity rotation6.

1 (def−top−l e v e l−cram−func t ion my−top−l e v e l ()
2 (d o l i s t (? o b j e c t−type ’ (: breakfas t−c e r e a l : milk : cup))
3 (exe : perform (an a c t i o n
4 (type t r a n s p o r t i n g)
5 (o b j e c t
6 (an o b j e c t
7 (type ? o b j e c t−type)))
8 (l o c a t i o n
9 (a l o c a t i o n

10 (on " CounterTop ")
11 (name " i a i _ k i t c h e n _ s i n k _ a r e a _ c o u n t e r _ t o p ")))
12 (t a r g e t
13 (a l o c a t i o n
14 (pose (c l−t f : make−pose−stamped
15 "map" 0 . 0
16 (c l−t f : make−3d−vector 1 1 1)
17 (c l−t f : make−quaternion 0 0 0 1))))))))))

Executing this code should result in the following task tree in figure 2.5. In figure
2.5 you can see that the task tree’s root has but one child, which represents the top
level plan. The top level plan has three subtasks, the transporting actions of the
three items of type :cereal-box, milk and cup. In the code segment of the last subtask,
transporting the cup, the corresponding action can be found as parameter of the
code struct. The target pose is already resolved. The path for each subtask is unique,
even if the designators called only differ in the object type. To distinguish them from
another, a :call n suffix is added to the path of each siblings of similar S-expressions. I
can now use this task tree for further examples on reasoning and code replacement.
Calling a Prolog predicate evaluates the predicates condition on the task-tree and
returns the first solution as soon as found, while the rest can be retrieved lazily. To
get all subtasks of the root node I first need to get the specific node, then access its
subtasks

1 (prolog ’ (and (top−l e v e l−task my−top−l e v e l−plan ? root−task)
2 (subtask ? root−task ?sub−task)))

As explained in 2.2.5 a lazy list computes each element as soon as needed, while the
first result is returned right away. I can extract the first element of a lazy list with

6The pose should differ between the objects, but this is just an example.

2.2. CRAM 17

FIGURE 2.5: An example of the task tree transporting three items.

the command car and calculate the next element with lazy-cdr. The head of this par-
ticular lazy list contains two pairs: ?root-task is the car (first element) of the first pair
and ?sub-task the car (first element) of the second pair. The cdr (second element) of
the first pair is the root task of the task tree and the cdr of the second pair is the first
solution of a subtask found.
(((?root-task . <top-level-root-task>)

(?sub-task . <my-to-level-task-object>))
<lazy-cdr-object>)

I can now simply car this entry, if I only need one solution, or, for example, use lazy-
cdr to maintain lazyness and get the next solution, as well as force the list to eval-
uate every possible solution. Force-calculating every solution might require huge
resources, hence I try to avoid that. Another example searches the task-tree for a
task, whose plans designator is of the specified action-type.

1 (task−s p e c i f i c−a c t i o n ? top−l e v e l−name ? subtree−path
2 ? act ion−type ? task ? des ignator)

This predicate returns an associative list of tasks and designators, where the desig-
nator has the same properties as when it was called within the tasks plan. I only
search in the task-tree given by ?top-level-name, unter the path ?subtree-path for an
action of type ?action-type. An example could look like this:

1 (prolog ’ (task−s p e c i f i c−a c t i o n my−top−l e v e l−plan ((my−top−l e v e l))
2 : t r a n s p o r t i n g ? task ? desig)))

Here I get the rightmost transporting task from figure 2.5 as head of the lazy list.
In ?task the actual task is stored, in ?desig I get the action designator stored in the
parameter slot of the code struct.
Calculating all possible tasks that suffice this condition leaves the predicate to tra-
verse the whole task tree below the subtree-path given. These predicates are just

18 Chapter 2. Foundations

TABLE 2.1: CRAM Prolog predicates for traversing the task tree.

Predicate Result

top-level-task (?tl-name ?tl-node) Root node of task tree named ?tl-name.
task-full-path (?node ?path) Path of given node.
task (?tl-name ?path ?node) All tasks under ?path.
subtask (?task ?subtask) All direct subtasks of ?task.
subtask+ (?task ?subtask) All subtasks of ?task.
task-sibling (?task ?sibling) All tasks that share the same parent with ?task.
task-parameter (?task ?parameter) Argument (designator) the ?task was called with.
task-specific-action (?tl-name ?path Task and designator of type ?action-type
?action-type ?task ?designator) under ?path.

some of those I need to design the transformation rules. The most important predi-
cates used are listed in table 2.1.

2.3 Transformational Planning

Basically, transformational planning tries to change the course of a seemingly se-
quential execution to achieve a better performance overall. Transforming plans
themself or their hierarchy in general needs some guidance; rules must be designed,
investigated if they are applicable. The rule must consist of a concrete idea about
how it changes the code. My current approach is mostly influenced by Müller’s of-
fline plan improvement (Müller, 2008) and the cognition and predicate based rules
from (Beetz et al., 2012) and (Mösenlechner, 2016). Müller suggests a simple struc-
ture for transformation rules. If it is reasonable to apply a transformation rule will
be determined by its applicability. An input schema contains the set of plans to be
transformed. By applying the transformation form upon the input schema I get the
transformed output plan.

applicability
input schema

transformation
↓

output plan

Müller applies his transformation upon plans in his plan library, adding the newly
transformed plans and increasing the library with every iteration of transformations.
An overview of Müller’s TRANER structure can be seen in figure 2.6. For all the
plans in the library he can execute, evaluate, transform and re-execute as he will,
revoking malfunctioning plans and keeping the well-functioning ones.
In my implementation plans are not stored in a library, but can be defined at various
locations and distributed over multiple projects, without compromising its function-
ality. Like in Müller’s structure I execute plans implicitly through higher level plans,
creating an execution trace (2.2.6), which can be evaluated via Prolog. Executing the
right predicates in CRAM Prolog lets us reason about a rules applicability and pro-
vides an input schema for the transformation. An example transformation could be
to rearrange the order in which multiple objects are acted on as in figure 2.7. This
transformation takes two plans for transporting an object and switches their execu-
tion order in the higher level plan Set table, which describes what the robot should

2.3. Transformational Planning 19

FIGURE 2.6: The basic structure of TRANERs transformation cycle.

FIGURE 2.7: Example transformation for changing execution order.

do in an abstract way.
Besides regrouping and rearranging actions Müller proposed other transformation
patterns, like using containers, where he can stack multiple objects upon another
and carry just the bottommost. Another idea is to exploit resources more efficiently.
An easy example for this would be to use both grippers in every suitable situation.
Talking about pick and place tasks, a robot can save time by carrying two objects at
the same time, one in each gripper, to save extra navigation actions.
On the contrary there are situations which are a bit harder to apply general rules
upon, e.g. manipulation of the room interior. An open cupboard can spare the open-
ing action when fetching something from inside, but can also prevent the robot from
accessing location, which were easily accessible before. Reasoning about this behav-
ior can get difficult with increasing complexity of the scenario.

Implementational constrains of the CRAM task tree prevent us from exchanging
tasks by other tasks, for their names are part of their unique path in the tree, as will
be discussed in Section 5.2. But still I can apply transformation techniques on the
execution trace by using code replacements. To transform the plan like in figure 2.7
and using the transporting plan visualized in figure 2.5 I first need to acquire the
nodes to be transformed from the task tree.

1 (prolog ’ (and
2 (task−s p e c i f i c−a c t i o n my−top−l e v e l ((my−top−l e v e l))
3 : t r a n s p o r t i n g ? f i r s t −task ? f i r s t −desig)
4 (task−s i b l i n g ? f i r s t −task ? second−task)
5 (task−parameter ? second−task ? second−desig)
6 (task−f u l l−path ? f i r s t −task ? f i r s t −path)
7 (task−f u l l−path ? second−task ? second−path)))

20 Chapter 2. Foundations

FIGURE 2.8: The task tree after code replacement to switch actions.

Now I have one task-path and its action designator in ?first-path and ?first-desig, and
the second components in ?second-path and ?second-desig. To add a code replacement
to a task I can call the replace-task-code function. In the following code I swap the
action designators between the two tasks.

1 (replace−task−code ’ (TRANSFORMATION−1)
2 # ’ (lambda (& r e s t desig)
3 (de c lare (ignore desig))
4 (perform ? second−desig))
5 ? f i r s t −path
6 (cpl−impl : : get−top−l e v e l−task−t r e e ’my−top−l e v e l))
7
8 (replace−task−code ’ (TRANSFORMATION−2)
9 # ’ (lambda (& r e s t desig)

10 (de c lare (ignore desig))
11 (perform ? f i r s t −desig))
12 ? second−path
13 (cpl−impl : : get−top−l e v e l−task−t r e e ’my−top−l e v e l))

The first argument should be the S-expression of the function executed, but even if
there is bogus in there, it does not affect the replacement. As explained in section
2.2.6 the replaced code, namely the lambda function containing the perform key-
word, will be executed instead of the tasks original code. The task tree should now
look like in figure 2.8.

Using Müllers and Mösenlechners definitions of a good plan structure, how to
reason on the execution trace and how transformation rules should be built, I can
begin transforming the execution trace by myself. How far I can go with code re-
placements will be explained in chapter 3, where I analyze the execution traces of
different scenarios, define my own transformation rules and develop Prolog predi-
cates to reason about applicability.

21

Chapter 3

Methods and Implementation

In the previous chapter I introduced the CRAM architecture, designators, the ex-
ecution trace, predicates, the bullet projection and plan transformation. Based on
those technologies I can design transformation rules and their respective predicates
to check applicability. To explain the concepts of this chapter better, I introduce three
example scenarios that generate the plans I am going to transform. I will investi-
gate the plans towards how they can be improved afterwards and design predicates
to extract the improvable parts from the task tree. In parallel to implementing the
predicates I will present their corresponding transformation rules. To make it eas-
ier for the next programmer interested in transforming CRAM plans I implemented
a generic mechanism to register, prioritize and automatically apply transformation
rules on the plan at hand.

3.1 Task tree analysis, Prolog predicates and transformations

A transformation rule contains the manual of how to change a plan. To determine if
a transformation is useful for a scenario, I need to check its applicability by executing
their respective Prolog predicate. Remembering what have been said about trans-
formation rules in Section 2.3 the pattern of a transformations can be simplified to
the following structure:

applicability
input schema

transformation
↓

output plan

By the end of this Section I will have three transformation rules that might be applied
in the scope of pick & place tasks. My first rule will change the course of fetch and
deliver actions in such ways, that the robot tries to use both his grippers to transport
multiple objects at once. The second rule implicates using a tray to carry even more
objects at once. Lastly I want to decrease unnecessary environment manipulation,
meaning that the robot can leave the container open until having collected all items
from within.

3.1.1 Scenarios

I have a total of three scenarios that all include the PR2 robot and the kitchen. Each
scenario represents a different sequence of pick and place tasks that all have the
common goal of putting a list of objects from various locations in the kitchen onto
the table in the very center of the kitchen, called kitchen island. Those scenarios are
executed and tested in the bullet projection environment. A scenario is defined as a

22 Chapter 3. Methods and Implementation

FIGURE 3.1: Scenario 1. Setup for transporting four objects from the
sink counter (left) to the kitchen island (right).

FIGURE 3.2: Scenario 3. Cereal box, spoon and tray are on the sink
area, cup and milk are in the fridge (right).

top level plan, containing all the necessary object and location designators used in
actions of type transporting. Transporting actions include fetching an object from one
location and delivering it to another.

My first scenario contains four objects (spoon, cereal box, milk and cup) on the
table near the sink (see Figure 3.1), called sink-area.

In the second scenario’s setup all desired objects are stored in a closed fridge. In
the end those objects should be placed on the kitchen island like in scenario 1. Based
on the actions of type transporting, consisting of the subactions fetching and delivering,
I add two more actions to this process, accessing-container and closing-container. I
combine this set of actions in an action of type transporting-from-container. Before
transporting an object from within a container, the container must be opened first
and closed after this object has been collected (see Figure 3.3).

By combining the main features of scenario 1 and 2 I create a third setup, where
two objects are placed on the sink, two more are stored in the fridge. Again the robot
needs to collect all four objects from their respective locations. First he acquires the
two on the sink area, then he takes care of those in the fridge (see Figure 3.2).

When implementing scenario 2 and 3 I experienced, that collision detection in
the bullet environment needs to be enhanced. Each object in the bullet simulation
has its bounding box, that fully surrounds the object’s mesh. Since I want to fetch
objects from within such a bounding box the robot would always detect a collision

3.1. Task tree analysis, Prolog predicates and transformations 23

FIGURE 3.3: Scenario 2. (top left) Open the fridge to see three objects
inside, (top right) fetch the milk, (bottom left) close the fridge door

and (bottom right) deliver the object onto the kitchen island.

with this container, making it impossible to grab something from inside. Unfortu-
nately I did not find a solution to avoid this without altering the fridge meshes, like
spawning the fridge’s walls separately instead of the fridge as a whole. In order to
make movement inside a container possible without falsely detecting a collision, the
bounding boxes must be aligned close to the mesh, instead of simply wrapping a
bounding box around it. To avoid this problem I implemented a mechanism, that al-
lows collision with the container after opening it. After closing the container I enable
collision detection with the container again.

3.1.2 Task tree analysis

The task tree is my main source of information and target of every transformation
made. To investigate my possibilities I can look into the task tree of a scenario from
Section 3.1.1. In scenario 1 I have four objects to carry from one location to another.
The task tree of scenario 1 can be seen in Figure 3.4.

24 Chapter 3. Methods and Implementation

FIGURE 3.4: Scenario 1 task tree, transporting four objects with ini-
tializing and finalizing the plan.

The scenario 2 task tree looks similar the one from scenario 1 in Figure 3.4, instead
of simply transporting four objects, in the pick and place tasks from scenario 2 I
need to open the container, fetch the object from within, close the door and then
deliver the object. Therefore, I need to define an additional action type, that I call
transporting-from-container. You can see the scenario 2 task tree in Figure 3.5.

FIGURE 3.5: Scenario 2 task tree,

There is a third scenario combining simple transporting actions and transporting-
from-container actions. I use two actions of each kind: breakfast-cereal and spoon will
be in the sink area, milk and cup are in the fridge. I first gather the objects from the
sink area, then account for those in the fridge (see Figure 3.6).

FIGURE 3.6: Scenario 3 task tree,

3.1.3 Transformations

In this Section I concentrate on the transformation and output plan part, while applica-
bility and input schema are discussed in Section 3.1.4. Following I will explain three
transformations that are applicable to the scenarios explained in Section 3.1.1. The
scenarios 1, 2 and 3 provide different task trees, that allow different application of
transformations.

3.1. Task tree analysis, Prolog predicates and transformations 25

FIGURE 3.7: Scenario 1 task tree transformed with both-hands-rule.
It delays one delivery action to be executed after the second transport.

both-hands-rule My first transformation is called both-hands-rule and enables trans-
porting two objects at the same time. This is done by extracting two actions of type
transporting from the task tree that start at the same location, then switching the or-
der of their fetching and delivering actions. Where in the original plan the robot first
fetches one object and delivers it immediately, I delay the deliverance and instead
append the first delivering action after the transport of the second object. After trans-
formation the two transporting actions will be resolved to fetching A, fetching B,
delivering B and delivering A. By changing part of the scenario’s plan the transfor-
mation results in a partially changed output-plan. The both-hands-rule can be applied
to scenario 1 and 3, while in scenario 2 this transformation would collide with the
opening and closing of the fridge door. How this rule would change the task tree of
scenario 1 can be seen in Figure 3.7.

tray-rule For the second transformation I want to make use of extra objects obtain-
able from the kitchen. A tray fits my purpose, since I want to carry more that one
object at a time. With the help of a tray I can put my objects onto this carrier and
transport the carrier instead of each object separately. In this demonstration I can
put up to three objects on the tray and still carry the tray safely, which means, the
objects can stand on the tray without being stacked and there is still enough room
to grab the tray with a gripper. In the transformation I need to change the location
where the objects are delivered to, from the kitchen island to a pose on the tray. To
make this process more flexible I first search for the tray after fetching an object,
transform the tray’s pose to a suitable location above the tray and swap the original
object’s delivery location with the one above the tray. After the last object has been
put on the carrier object, I fetch the tray and deliver it to the kitchen island. Besides,
I must constraint the transformation to only use transporting actions that start at the
same location (sink area) and end at nearby coordinates (kitchen island), otherwise
an object carried by tray might either be placed at the destination falsely, or the fetch-
ing actions to obtain an object would be undesirably long. What this transformation

26 Chapter 3. Methods and Implementation

FIGURE 3.8: Scenario 1 task tree transformed with tray-rule. The rule
changes the delivery location of up to three objects to a pose on the

tray and appends a fetching and delivering action for the tray.

does to the scenario 1 task tree is illustrated in Figure 3.8. The objects transported by
a carrier (the tray) are illustrated in Figure 3.9. Scenario 1 and 3, can be transformed
with this rule, but scenario 2 does not contain any transporting actions.

By the time when I was developing this transformation there was no mesh for a
tray, and also no poses for gripping an object like that. I found a suitable mesh from
an other project of the Institute for Artificial Intelligence and adapted its features
for the bullet world. The DAE mesh was converted to STL, and its position and
scale have been configured. As mentioned before, the bullet world’s meshes are
surrounded by a bounding box, used to calculate collisions. Simply placing the tray
mesh onto the sink-area wouldn’t let the gripper grasp the tray without colliding
with the kitchen below, therefore I needed a base between the kitchen surface and
the tray. This base is just a flat block, lifting the tray up a bit. Furthermore, the
motion for grasping the tray needs poses, from where the tray can be accessed by
the gripper. I provided those gripping poses by copying the poses for gripping a
dinner plate and adjusting it for the tray mesh.

The bullet reasoning package did not support transporting objects carried by
other objects, like using a tray to transport objects on it. To make this possible I
got inspired by how the robot carries objects in his grippers and adapted it to the
tray transport. For all objects that shall be moved with the carrier, I attach those
to the carrier item in the bullet world. For this to happen I extend the item class in
the bullet reasoning package by a list of attachments. When the carrier is moved I
observe the carrier’s pose before and after movement, calculate the transformation
and apply this transformation to all attached objects. Additionally I must set the
mass of all attached objects to zero to prevent gravity from interfering in the time
between movement of the carrier and transition of the attached objects. After the
carrier has been moved and placed at its destination, the mass can be reset to the
default value and the carrier’s attachment list is wiped clean.

3.1. Task tree analysis, Prolog predicates and transformations 27

FIGURE 3.9: Scenario 1 after tray-rule transformation. The objects
breakfast-cereal, milk and cup are put on the tray.

FIGURE 3.10: Scenario 2 task tree transformed with environment-
rule. It skips opening and closing containers between the first access-

container and the last closing-container action

environment-rule In the third transformation I want to improve the process of col-
lecting multiple objects from drawers, cupboards and other containers. It is called
environment-rule and can be applied on plans that include transporting-from-container
actions like scenario 2 and 3. My main idea is to leave doors and drawers open
as long a possible, hence reducing the action of opening and closing containers to
a minimum. For this I obtain all transporting-from-container actions and their sub-
actions accessing-container and closing-container. The action for accessing the con-
tainer includes navigating to the container and opening it. The other one, closing-
container also navigates the robot to the container but closes it. When applying the
environment-rule some actions will be ignored: from the first transport I only remove
the closing-container action, from the last I ignore accessing the container. For all in-
termediate actions I can remove both, the accessing and closing actions. In Figure
3.10 you can see the environment-rule being applied on the task tree from scenario
2. Leaving containers open may cause some problems. Doors and cupboards might
block the robot from achieving certain actions that would be easier to execute if those

28 Chapter 3. Methods and Implementation

containers would be shut close. Determining when to shut a container is a complex
issue that requires reasoning about navigation paths and their dependencies to con-
tainers blocking this path. For my scenarios there is no problem in leaving the fridge
door open, except for the fact, that nobody should leave a fridge open too long.

The actions transport-from-container, access-container and close-container were not
yet developed in the bullet context, also no generic plans exist for manipulating a
container. Still I need those plans to be able to argue over them and design transfor-
mations like the environment-rule. To keep the implementational overhead low I set
up those plans and resolved them directly to simulation-specific code.

3.1.4 Applicability and input schema

To check applicability of a transformation I can use Prolog predicates. Those predi-
cates traverse the task tree to find patterns feasible for improvement, done by trans-
formation. In this Section I will also explain what the input schema of those trans-
formations are, since checking applicability and getting the input schema includes
almost the same predicates. I can determine the applicability of a transformation by
executing predicates designed to do that. If such a predicate returns a solution, this
solution can be used for the transformation. If it resolves to NIL, the rule is not ap-
plicable. I have three transformation rules whose applicability predicates vary, since
they look for different patterns in the task tree.

both-hands-rule This transformation requires at least two transporting actions to
be applicable. Those transports must begin at the same location, otherwise the robot
could navigate across the map just to fill his second gripper. This might lead to a
further distance navigated than before transformation. To find out if both-hands-rule
is applicable and get the required input parameters for the transformation, I use the
following predicate.

1 (<− (task−t ranspor t ing−s i b l i n g s (? f i r s t −path ? f i r s t −fe tch ing−desig)
2 (? second−path ? f i r s t −del iver ing−desig))
3 (top−l e v e l−name ? top−l e v e l−name)
4 (top−l e v e l−path ? path)
5 (task−t ranspor t ing−a c t i o n ? top−l e v e l−name ? path ? second−task ? _)
6 (task−t ranspor t ing−a c t i o n ? top−l e v e l−name ? path ? f i r s t −task ? _)
7 (without−replacement ? f i r s t −task)
8 (without−replacement ? second−task)
9 (not (== ? f i r s t −task ? second−task))

10 (task−l o c a t i o n−descr ip t ion−equal ? f i r s t −task ? second−task)
11 (task−f u l l−path ? f i r s t −task ? f i r s t −path)
12 (task−f u l l−path ? second−task ? second−path)
13 (task−fe tch ing−a c t i o n ? top−l e v e l−name ? f i r s t −path ? _ ? f i r s t −fe tch ing−desig)
14 (task−del iver ing−a c t i o n ? top−l e v e l−name ? f i r s t −path ? _ ? f i r s t −del iver ing−desig))

In lines 3 and 4 I get the task tree’s name and the path of the top level plan in the tree.
With this I can search for two transporting actions in the tree (lines 5-6). The argument
without-replacement prevents, that I use nodes that already have been transformed.
Transforming nodes that already have been used in transformations, could lead to
an unstable state of the plan. Why this is problematic is discussed in Section 5.2.

I want to compare the locations of my two transporting-actions and for that I must
make sure, they are not the same action anyway (lines 9-10). For comparing the loca-
tions I can rely on the location’s description (see designators in Section 2.2.2). If the
predicate finds any solutions so far (lines 5-10) I can start extracting the information
necessary for transformation. What I need are the paths of the two nodes that are
responsible for the transporting actions, those are the tasks to transform. Moreover, I
want to have the fetching and delivering actions from the first transporting action, this

3.1. Task tree analysis, Prolog predicates and transformations 29

will be my input schema. The transformation then transforms the first transporting
action to only contain its fetching action. In the second transport I end up with the
original transporting action with fetching and fetching, but also the delivering action
from the first transport.

When executing the predicate I can simply use the first solution. Applying this
rule to scenario 1 I first transform the third and fourth transport, and after applying
this rule again the first and second transports are transformed to be executed with
two grippers (see transformation in Figure 3.7).

tray-rule Carrying objects by using a tray can be useful, when at least two trans-
ports are in the plan, that start and end at an approximately near location. In my
demo I can place up to three objects on the tray and still carry it securely. For this
transformation I do the applicability check and retrieving the input schema sepa-
rately. This predicate accounts for applicability.

1 (<− (task−t ranspor t ing−with−t ray (? de l iver ing−path))
2 (top−l e v e l−name ? top−l e v e l−name)
3 (top−l e v e l−path ? path)
4 (l o c a t i o n−distance−threshold ? dis t−threshold)
5 (task−t ranspor t ing−a c t i o n ? top−l e v e l−name ? path ? l a s t−task ? _)
6 (task−t ranspor t ing−a c t i o n ? top−l e v e l−name ? path ? before−l a s t−task ? _)
7 (not (== ? l a s t−task ? before−l a s t−task))
8 (without−replacement ? l a s t−task)
9 (without−replacement ? before−l a s t−task)

10 (task−l o c a t i o n−descr ip t ion−equal ? l a s t−task ? before−l a s t−task)
11 (task−t a r g e t s−nearby ? l a s t−task ? before−l a s t−task ? d is t−threshold)
12 (task−f u l l−path ? l a s t−task ? l a s t−path)
13 (task−del iver ing−a c t i o n ? top−l e v e l−name ? l a s t−path ? de l iver ing−task ? _)
14 (task−f u l l−path ? de l iver ing−task ? de l iver ing−path))

In contrast to the both-hands-rule I don’t only look at the starting location, but also
check the location where the objects are brought to. Comparing the target location
can’t be done by looking at the descriptions of their location designators, since they
only contain discrete poses. Instead I must calculate the distance between those lo-
cations to argue if they are delivered at nearby spots. For that I have a constant
distance threshold set to 50 cm, that I get from the location-distance-threshold predi-
cate (line 4). In lines 5-6 I gather two transports, make sure they are not the same
and replaceable (lines 7-9), and check if they start at the same location (line 10) like in
both-hands rule. Line 11 detects if those transports’ target locations are approximately
at the same position, using the 50 cm dist-threshold. As preparation for getting the
input schema, I retrieve the path of just one of the delivering actions, that I will be
calling the anchor, since this task will be fixed while the amount of other transports,
suitable for the tray-rule, may vary. I can use this predicate to check applicability be-
cause the anchor’s path will only be set (not NIL) when all the predicate’s arguments
resolve positively, and this only happens if there are at least two nearby transporting
actions.

Now that I got the path of one delivering action’s task, I want to have all the other
delivering actions that can be used for transformation. I use the path of my anchor
from the task-transporting-with-action to get a list of all other delivering actions. For
getting those deliveries I use the following predicate and feed it with my anchor’s
path.

1 (<− (task−t ranspor t ing−with−tray−other−d e l i v e r i e s ? f i r s t −del iver ing−path (? other−
path))

2 (bound ? f i r s t −del iver ing−path)
3 (top−l e v e l−name ? top−l e v e l−name)
4 (top−l e v e l−path ? path)
5 (l o c a t i o n−distance−threshold ? dis t−threshold)
6 (task−of−path ? f i r s t −del iver ing−path ? del−task)

30 Chapter 3. Methods and Implementation

7 (task−del iver ing−a c t i o n ? top−l e v e l−name ? path ? other−del−task ? _)
8 (not (== ? other−del−task ? del−task))
9 (parent+ ? del−task ? task−t r a n s p o r t)

10 (task−type ? task−t r a n s p o r t : t r a n s p o r t i n g)
11 (parent+ ? other−del−task ? other−task−t r a n s p o r t)
12 (task−type ? other−task−t r a n s p o r t : t r a n s p o r t i n g)
13 (without−replacement ? task−t r a n s p o r t)
14 (without−replacement ? other−task−t r a n s p o r t)
15 (task−l o c a t i o n−descr ip t ion−equal ? task−t r a n s p o r t ? other−task−t r a n s p o r t)
16 (task−t a r g e t s−nearby ? task−t r a n s p o r t ? other−task−t r a n s p o r t ? d i s t−threshold)
17 (task−f u l l−path ? other−task−t r a n s p o r t ? other−transp−path)
18 (task−del iver ing−a c t i o n ? top−l e v e l−name ? other−transp−path ? other−del iver ing−task

? _)
19 (task−f u l l−path ? other−del iver ing−task ? other−path))

Although I am only interested in the delivering actions, I still need their superior
transporting actions to check my location constraints (start and end location approx.
equal). I get those transports with the parent+ argument, which recursively receives
each parent of the observed deliveries (lines 9-12). By checking the location con-
straints I reduce my search space to only those transports I need, and from those I
derive their delivery actions. In the end my input schema contains one delivery path
(?first-delivering-path) and all other delivery paths (?other-path). This set of paths is
then fed into the tray-rule transformation, which alters the deliveries in a way, that
the objects are not put directly onto the kitchen island, but instead on the tray (see
tray-rule in Figure 3.8).

environment-rule This rule is only applicable to plans that contain transports from
within a container. Like for the both-hands-rule I determine applicability and get the
input schema by the same predicate, which searches for transporting-from-container
actions, that share the same container position.

1 (<− (task−t ranspor t ing−from−f r i d g e ? navigate−a c t i o n ? access ing−path ? c los ing−path)
2 (top−l e v e l−name ? top−l e v e l−name)
3 (top−l e v e l−path ? path)
4 (top−l e v e l−task ? top−l e v e l−name ? root)
5 (task−s p e c i f i c−a c t i o n ? top−l e v e l−name ? path : t ransport ing−from−co nt a i n er ?

t ransport−a c t i o n ? _)
6 (task−s p e c i f i c−a c t i o n ? top−l e v e l−name ? path : t ransport ing−from−co nt a i n er ?compare

? _)
7 (not (== ? transport−a c t i o n ?compare))
8 (without−replacement ? t ransport−a c t i o n)
9 (without−replacement ?compare)

10 (l o c a t i o n−distance−threshold ? threshold)
11 (task−nearby ?compare ? t ransport−a c t i o n ? threshold : located−a t)
12 (task−f u l l−path ? transport−a c t i o n ? transport−path)
13 (task−s p e c i f i c−a c t i o n ? top−l e v e l−name ? transport−path : access ing−co n ta in er ? a c c e s s

? _)
14 (task−f u l l−path ? a c c e s s ? access ing−path)
15 (task−s p e c i f i c−a c t i o n ? top−l e v e l−name ? access ing−path : navigat ing ? navigate ?

navigate−a c t i o n)
16 (task−s p e c i f i c−a c t i o n ? top−l e v e l−name ? transport−path : c los ing−co nt a i ne r ? c l o s i n g

? _)
17 (task−f u l l−path ? c l o s i n g ? c los ing−path))

Again I search for pairs of tasks that start at the same location. For my purposes
I can say, that similar starting-locations mean, that the transports involve the same
container (10+11). This is not a sophisticated, general solution for distinguishing
containers but for my case it is accurate enough. In contrast to the both-hands-rule,
I need all solutions of the task-transporting-from-fridge predicate, instead of just the
first one. The list of all solutions, which contains all transports involving the con-
tainer, will be my input schema for the environment-rule. My parameters ?navigate-
action, ?accessing-path and ?closing-path build a 3-tuple, and the solution list is a list
of those tuples. The ?navigate-action moves the robot to the container, ?accessing-path

3.2. Generic CRAM plan transformation framework 31

points to the task that is used to open the container, and ?closing-path points to the
closing task. In the transformation it is decided, which of the latter tasks should be
discarded and which should be kept, while the navigation action must always be
executed before fetching an object from the container (see transformation in Figure
3.10).

The most helpful development has been in traversing the task tree in reasonable
time. Analyzing huge execution traces like the task tree has already been a prob-
lem in (Müller, 2008) and it indeed had negative impact on resolving the predicates
shown in Section 3.1.4. Since CRAM Prolog predicates take very long time and mas-
sive resources when traversing the tree to find tasks with the specified features, there
was a solution in need, and was found. Instead of feeding the whole task tree into
a predicate, I can minimize the task tree a prior with the help of Lisp. For example,
using Prolog for searching a task that contains an action designator of type trans-
porting did return the first task very fast, but the more Prolog needed to search in the
tree, the slower it became and eventually flooded the RAM until SBCL (Steel Bank
Common Lisp) ran out of heap size. With Lisp, on the other hand, I can take the root
node of the tree, receive all children of the root recursively and create a list of lists of
all tasks in the whole tree, then I flatten it to a list containing all tasks without any
sublists. Now I can filter this list depending on what I search for and return the re-
maining tasks back to the Prolog predicate. This process sounds costly but is actually
done within a few milliseconds depending on the tree size and search complexity.

If filtering the task tree through Lisp is not an option, it may be difficult to de-
sign predicates that are fast enough to find the desired solution before you run into
memory issues. Traversing the task tree can be a computationally expensive task. If
you can’t reduce the memory demand of a predicate, you can at least give the SBCL
heap more space for calculation. Add following line to the slime config file, to ex-
pand memory allocation to 6GB. This should give the predicates enough heap size
for small task trees.

1 (se tq i n f e r i o r−l i s p−program " s b c l −−dynamic−space−s i z e 6 1 4 4 ")

3.2 Generic CRAM plan transformation framework

Previously I talked about three transformations and their applicability rules. The
rule’s applicability is checked by executing a Prolog predicate designed to search
for a pattern used in the rule. Hence a transformation consists of an applicability
predicate on the one hand, that can also retrieve the input schema, and the transfor-
mation on the other hand, which decides how to change/improve the plan by us-
ing the input schema. Executing the transformation eventually results in an output
plan. This routine of checking for applicability and applying rules is generalized
and automated in the following framework. Every programmer can design rules
and predicates suitable for the plan at his or her hands. The generic transformation
framework provides registration of transformations and their predicates. Addition-
ally, one can enable or disable certain rules and prioritize them, in case multiple
rules may be applicable for the same plan. In Figure 3.11 it is illustrated how the
framework works.

To register a transformation you can call register-transformation-rule with the name
of a transformation function and its applicability predicate. This will add the func-
tion and predicate to a hash table in which the transformation name is the key and
the predicate the value. You can disable certain rules with disable-transformation-rule

32 Chapter 3. Methods and Implementation

FIGURE 3.11: The generic transformation rule framework allows the
registration and prioritization of rules.

and enable them with enable-transformation-rule, which basically adds and removes
the name from a list of names. All transformation names in this list will be ignored
when checking for rule applicability. Since multiple transformations may be appli-
cable at once, the programmer can prioritize the registered rules with prioritize-rule.
After registering and sorting the transformations you can call apply-rules, executing
the predicates of *transformation-rules*, except those listed in *disabled-transformation-
rules*, in order given by *rule-priority*. From those rules, whose predicates are re-
solved positively, the first of those transformations is applied on the plan. Applying
rules can be done as long as predicates still evaluate positively. If you now launch
the top level CRAM again, the transformed output plan will be executed.

33

Chapter 4

Experimental Evaluation

To determine to what extent the transformations affect the scenarios I need to eval-
uate them. In this chapter I will analyze and compare the distances of the robot
moved, how failure prone the plans are and by how much I can reduce the amount
of actions performed.

To calculate the performance of a plan I gather all actions of type navigating,
which contain the robot’s navigation poses, and moving-tcp, containing poses to
where the gripper is moved. After sorting them by their time stamp, to get them
in a chronological order, I calculate the euclidean distance between one pose and the
next, creating a list of distances of each navigation and gripper movement. Summing
them all up I get an estimation of the total distance the robot has moved throughout
a scenario.

Inspired by (Müller, 2008), who took between 168 and 336 samples, my evalua-
tion is based on 200 executions per variation of a plan. I will not bother the reader
with the whole dataset, but concentrate on mean values of the navigation distance
and gripper distance, as well as the total of executed actions, and how prone to
failures the plans are. Furthermore, I calculate the variance and significance for a
one-tailed t-test. My hypothesis for each evaluated variant is, that transforming the
original plan improves the performance of the plan in terms of either the total dis-
tance navigated or grippers moved. If the significance is below 0.05, the transforma-
tion counts as a significant improvement. Therefore, the hypothesis H0 to disprove
is that there is no significant improvement (significance bigger than 0.05).

The table’s columns consist of the means of navigation and gripper distance,
which represent the mean total cost of those actions in the plan. In σ I put the vari-
ance of the deviations between the parameters from the original and the transformed
plan. Sign. stands for the significance of the deviations, after calculating the t-value
and considering the t-value table. The total distance contains the sum of all costs,
#Actions are the total number of actions and Error has the percentage of the plans
over all samples, that contain critical failures in fetching or delivering actions.

4.1 Evaluation of Transformation Experiments

My samples will cover scenario 1 transformed with the tray-rule and both-hands-rule,
collecting 200 samples each. In the original scenario 1 I use four items to transport.
To see the difference in using different amounts of items I will also collect 50 samples
of scenario 1 using three and two items, applying the tray-rule and both-hands-rule as
well. Regarding scenario 2, where only the environment-rule is interesting to observe,
there will be no empirical evaluation. Since there is no kinematic implementation
for opening or closing a container I lack of a cost function for those actions. I could
estimate the cost of opening the fridge door by taking the approximate distance of an

34 Chapter 4. Experimental Evaluation

action type picking-up twice, but evaluating data based on such estimations did not
seem very purposeful to me. Nevertheless I will take 50 samples to show that evalu-
ations not necessary. Equivalently the mixed scenario 3 has parts from scenario 1 and
2, but since I already evaluate transformations on scenario 1 and container transport
is not observed (scenario 2), I rely on the outcome of the scenario 1 transformation
samples. When collecting samples I run the whole plans in the bullet simulation,
in which I expect some actions to fail. By experience I know, that execution traces
with unsuccessful fetching or delivering actions yield unreasonable data for evalu-
ation with highly fluctuating amounts of counted actions and recorded distances,
therefore the data of such traces is discarded.

Scenario 1 with both-hands-rule Focusing the both-hands-rule applied twice on the
original plan, there is significant improvement in navigation distance and gripper
movement (see Table 4.1 and Figure 4.1).

TABLE 4.1: Evaluation of the both-hands-rule transformation on sce-
nario 1.

Avg. σ2 Sign. Avg. Avg. Avg. %
Nav. Nav. Nav. Grip. Total #Act. Err.

Scenario dist. dist. dist. dist. dist.

original 37.96 84.66 122.62 191.39 6%
both-hands- 26.30 5.76 <0.001 80.20 106.50 193.48 10,5%
rule x2 -30.72% -5.27% -13.15% +1,09% +4,5%

FIGURE 4.1: (Left) Navigation distance, (middle) gripper distance,
(right) #Actions. Comparing evaluation data of scenario 1 with both-

hands-rule.

From transporting four elements one by one I change the plan to fetching two
elements at once, before transporting them, trying to reduce the navigated distance
between the starting area and the goal. The navigation distance can be improved
by 30.72%, while the amount of actions stay almost the same, since I don’t add or
remove any in the transformation. Unfortunately the transformed plan shows more
failures, from 6% in the original to 10.5% with both-hands-rule transformation. Hold-
ing two objects, one in each gripper, apparently makes the plan less stable. Signif-
icance is calculated to 65.04, which results in a significance below 0.001, which is a
significant improvement.

4.1. Evaluation of Transformation Experiments 35

Scenario 1 with tray-rule In table 4.2 and Figure 4.2 you can see the impact of the
tray-rule.

TABLE 4.2: Evaluation of the tray-rule transformation on scenario 1.

Avg. σ2 Sign. Avg. Avg. Avg. %
Nav. Nav. Nav. Grip. Total #Act. Err.

Scenario dist. dist. dist. dist. dist.

original 37.96 84.66 122.62 191.39 6%
tray-rule 36.85 8.39 <0.001 113.79 150.64 248.60 12%

-2.92% +34.41% +22.85% +29,89% +6%

FIGURE 4.2: (Left) Navigation distance, (middle) gripper distance,
(right) #Actions. Comparing evaluation data of scenario 1 with tray-

rule.

By transforming the original plan the total of navigated distance decreases. For
the tray-rule it decreases by only 2.92% and after calculation this counts as a signif-
icant improvement. Due to to the transformation I now need to transport a total
of five items, and the save in distance between starting location and goal is not big
enough to compensate for the extra transporting action. If start and goal would me
further apart, using a tray would perform better. Since I have additional actions by
transporting the tray, also the average distance of grippers moved increases, as well
as the total amount of actions. By including the tray the plan gets more complex and
more failure prone than the original plan, from 6% to 12%. Calculating the t-value
for the navigation distance difference between original and transformed plan sam-
ples results in 5.01, which gets me a significance below 0.001, hence it is below 0.05
and counts as significant.

Scenario 1, both-hands-rule with 3 items Taking a look at Table 4.3 and Figure 4.3
you can see the impact of the both-hands-rule on the pick and place task including 3
items, first the breakfast-cereal, then milk, and finally the cup.

Using this rule on only three items is not as effective as using it twice on four
items, but still improves the original plan. Also notable is the high frequency of er-
rors, which is due to an issue in the bullet simulation with the breakfast-cereal item.
The box is difficult to grasp as the first element of three items, constantly choosing
inappropriate gripping positions, unable to reach the item. This problem does not
occur with other items, but for the sake of consistency I stuck to the original order
of items being transported. Since I discard all failed execution and only consider
successful executions to maintain consistent evaluation data, the data should still be

36 Chapter 4. Experimental Evaluation

TABLE 4.3: Evaluation of the both-hands-rule transformation on sce-
nario 1 with 3 items.

Avg. σ2 Sign. Avg. Avg. Avg. %
Nav. Nav. Nav. Grip. Total #Act. Err.

Scenario dist. dist. dist. dist. dist. dist.

original 31.93 45.49 77.42 164.52 60%
both-hands- 28.52 19.07 0.01 48.64 66.16 157.43 70%
rule -10,68% +6.92% -14.22% -4.31% +10%

FIGURE 4.3: (Left) Navigation distance, (middle) gripper distance,
(right) #Actions. Comparing evaluation data of scenario containing 3

items with both-hands-rule.

reliable enough to spot major differences to the demo with four items. In contrast to
scenario 1 with the both-hands-rule applied twice, the navigation distance decreased
less, but still very well. Comparing the original and the transformed plans’ naviga-
tion distance I get a t-value of 2.81, which gives us 0.01 significance (see Table 4.3
and Figure 4.4). Like in the demo with four items the gripper distance doesn’t really
change, but the failure frequency did, probably due to the breakfast-cereal issue.

Scenario 1, tray-rule with 3 items The tray-rule is applied on a scenario with three
items as well. Its outcome is shown in Table 4.4.

TABLE 4.4: Evaluation of the tray-rule transformation on scenario 1
with 3 items.

Avg. σ2 Sign. Avg. Avg. Avg. %
Nav. Nav. Nav. Grip. Total #Act. Err.

Scenario dist. dist. dist. dist. dist.

original 31.93 45.49 77.42 164.52 60%
tray-rule 31.20 5.04 0.4 79.36 110.55 267.46 54%

-2.29% +74.46% +25.70% +62,57% -6%

As in the evaluation of the tray-rule transformation on scenario 1 you can see a
slight improvement in the navigation distance, but immensely higher gripper dis-
tances and amounts of actions. The gripper distance is even bigger than in scenario
1, which may be because we lack the fourth item’s distance data, making the im-
pact of the tray-rule clearer. The t-value for the navigation distance is 0.92, which

4.1. Evaluation of Transformation Experiments 37

FIGURE 4.4: (Left) Navigation distance, (middle) gripper distance,
(right) #Actions. Comparing evaluation data of scenario containing 3

items with tray-rule.

corresponds to a significance of 0.4, hence an improvement is not at hand. Again,
increasing the distance between start and goal may render this rule more profitable.

Scenario 1, both-hands-rule with 2 items A scenario with only two items should
be optimal to the how the both-hands-rule performs. In Table 4.5 and Figure 4.5 it is
shown how well it improves the plan.

TABLE 4.5: Evaluation of the both-hands-rule transformation on sce-
nario 1 with 2 items.

Avg. σ2 Sign. Avg. Avg. Avg. %
Nav. Nav. Nav. Grip. Total #Act. Err.

Scenario dist. dist. dist. dist. dist.

original 19.88 35.19 55.07 103.94 2%
both-hands- 13.04 2.27 <0.001 35.15 48.19 101.61 12%
rule -34.41% -0.11% -12.49% -2.24% +10%

FIGURE 4.5: (Left) Navigation distance, (middle) gripper distance,
(right) #Actions. Comparing evaluation data of scenario containing 2

items with both-hands-rule.

Like with four items, a scenario with two items can be greatly improved with
the both-hand-rule. The robot navigates shorter distances, by 34.41% compared to
transporting the two items separately. Gripper distance doesn’t change much, as

38 Chapter 4. Experimental Evaluation

expected and already observed in the previous experiments. With a t-value of 30.26
this transformation changes the behavior significantly.

Scenario 1, tray-rule with 2 items Now I want to now if I can improve an environ-
ment with two items by transporting them with the help of a tray. The corresponding
data can be seen in Table 4.6.

TABLE 4.6: Evaluation of the tray-rule transformation on scenario 1
with 2 items.

Avg. σ2 Sign. Avg. Avg. Avg. %
Nav. Nav. Nav. Grip. Total #Act. Err.

Scenario dist. dist. dist. dist. dist.

original 19.88 35.19 55.07 103.94 2%
tray-rule 27.28 4.00 <0.001 68.38 95.66 173.15 8%

+37.22% +94.32% +80.97% +66,59% +6%

FIGURE 4.6: (Left) Navigation distance, (middle) gripper distance,
(right) #Actions. Comparing evaluation data of scenario containing 2

items with tray-rule.

For only two elements, the tray-rule produces no improvement. From two trans-
porting actions I make three, increasing the navigated distance even higher than in
the untransformed plan. As expected, the gripper distance increases drastically. In
conclusion I can say, that the tray-rule is not made for scenarios with such few items
to carry.

Scenarios 2 and 3 with environment-rule After taking 50 samples for scenario 2
before and after applying the environment-rule I compared their results. With the
navigated distance of 36.34 (before) to 37.67 (after) I consider this difference unim-
portant for evaluation, as well as the gripper movement distance of 42.68 (before)
to 41.68 (after). Only the difference in the average amount of actions form 125.47
(before) to 122.44 (after) gives a hint about the actions, responsible for opening and
closing the container, removed by the transformation. Since I have no means to
calculate the cost of those actions, apart from acknowledging their absence, I must
forfeit evaluating these scenarios.

4.2. Evaluation Summary 39

4.2 Evaluation Summary

As you can see, there are some improvements by transforming the plans. It depends
on the scenario’s setup which transformations are suitable and result in the best im-
provement. The tray-rule for example does not perform good in scenarios with short
transports. If there would be a scenario, where start and goal were further apart, I
consider the tray-rule a good choice. As long as the improvement in navigation is
higher than the cost for extra transitions of items, the tray-rule may perform better
than the original plan, but it would take wider environments than a small kitchen
to discover this threshold. Considering transportation supported by carriers is most
recommended for pick and place scenarios with many items, while carrying just a
few items is not worth the extra actions.

For the both-hands-rule I find it a serious improvement throughout all examples.
The gain of saved navigation is higher in scenarios with an even amount of items,
while the cost of gripper movement is almost unchanged. If possible, exploiting a
robot’s resources pays off, at least regarding the use of all grippers available.

41

Chapter 5

Conclusion

Here I conclude what information has been gained throughout this thesis, giving a
summary of my approach, having a discussion about my concepts and implemen-
tation, and eventually I give some recommendations on future work regarding this
topic.

5.1 Summary

Plan transformation has been pursued for over three decades, developed and imple-
mented in various ways and today still an interesting field of research. Automati-
cally letting a robot improve its behavior is a goal that many scientists try to achieve.
Plan-based robotics is one of those fields of research, building reasonable, sequential
or hierarchical, comprehensive manuals for robotic actions. Plan transformation, an
application of plan-based control, concentrates on finding and changing patterns in
a robot’s activities.

In this thesis I elaborated the use of transformation on plans, written in the
CRAM architecture. As can be seen, plan transformation techniques can be real-
ized on CRAM plans by using code replacements. All required data is fetched from
the execution trace’s task tree, containing the hierarchical plan structure, as well as
broad information to reason upon. Throughout the combination of CRAM Prolog
and Lisp, extracting valuable data is even possible in larger scale logs, as I found
out when using predicates to traverse the task tree. My analysis of large scale logs
has not been aimed at the tree’s depth, but more at the amount of information each
node contains. Furthermore, those transformations have been tested in a bullet sim-
ulation, providing a realistic environment for simulating the actions of robots. For
pick and place plans there are a lot of possible enhancements, as I have shown just a
few, but more did I contribute basic concepts about the approach of developing such
transformation rules with the tools at hand for analysis and application of changes.

5.2 Discussion

One limitation of CRAM code replacements is that it does not change the task-tree’s
original structure. I can only replace the tasks code by other code, but am not able
to add, remove or merge multiple task nodes. It is due to the flexibility of top-level
execution to use a plan’s path as identifier of a node that the original plan hierarchy
cannot be altered since it would not fit the original program structure anymore. In
other words, when a top level plan is executed, the executed plan’s hierarchy always
stay the same, creating the same task tree again. If there would be an extra node in
the task tree, that node would never be reached, since there is no corresponding
plan in the hierarchy of the top level plan, that would create it, hence the new node

42 Chapter 5. Conclusion

is never checked on code replacements, neither does it occur in any way during exe-
cution. I am bound to the task tree’s structure, given by the top level plans hierarchy
of underlying plans. Using code replacements on the task tree’s nodes is one way of
changing a plans behavior, but larger scale transformations, that require additional
actions (like the tray-rule) are hard to realize with the restriction of a fixed plan hier-
archy.

When a plan is transformed in a way like the tray-rule, where an extra action is
added in the code replacement, this extra action is added to the task tree as soon
as the transformed plan is executed. This leaves the task tree in a weird structure,
where, on one hand, I have the extra action inside the replacement of the last deliver-
ing action, on the other hand, a newly created task node containing the tray’s trans-
porting action, which would never be executed by the top level plan in its original
form. After all this additional task node does not cause malfunction of the trans-
formed plan, but gives insight on how the execution trace is built. Every executed
plan must be represented in the task tree, hence the tray transport action, contained
in the code replacement, is added as a node to the task tree. This behavior yields
positive and negative aspects.

Having additional, unattended, loose nodes in the task tree makes reasoning
more difficult. My Prolog predicates analyze the tree on patterns, in which such
nodes would appear as well, because they are not that easily distinguishable from
the usual nodes. On the contrary, such nodes, created after execution of a freshly
transformed plan, might have the potential to overcome the problem of a static, im-
mutable task tree, elaborated above, overcoming the restriction of replacing a node’s
code instead of actually adding and removing a node. In Section 5.3 I will propose
my ideas on how to use this behavior to our advantage.

5.3 Recommendations on Future Work

Transformation of CRAM plans is far from easily applicable, and has much potential
for improvement. The task tree, for instance, must be more flexible, but also consis-
tent, to serve as a reliable reasoning source. Alterations can only be applied by at-
taching a code replacement on plans’ nodes, while the original code is still present.
During execution the original code of a node is bypassed and the replacement will
be executed, if a code replacement exists. In the current state of development, the
task tree is not suitable for extensive acts of transformation, since transformation of
nodes, running with code replacements, can lead to inconsistent misbehavior.

An idea for an alternative concept contains two aspects: (1) it must be possible
to completely replace a task tree’s node, not just inject a code replacement, and there
must be a way to add and remove whole subtrees; (2) in order to execute such alter-
ations, the task tree must be executable independently from the top level plan. With
this, the top level plan is only used once to create the task tree, and transformations
can then be applied only on the task tree, regardless of the top level plan’s structure.
Furthermore, such a task tree can be granulated into subtrees, equivalent to the hi-
erarchy of CRAM plans, which can be collected into a plan library like in (Müller,
2008), making their transformation much easier. It is already possible to execute
subtrees separately but using this on a transformed task tree is yet to be developed.

When it comes to analyzing large datasets, it is imperative to use tools that work
fast enough to traverse the data in reasonable time and resource dimensions. SWI
Prolog may conquer this issue but CRAM Prolog does not by itself. Using Lisp

5.3. Recommendations on Future Work 43

functions to compress the knowledge base will help immensely in this process. On
the other hand, it may be more appropriate to enhance the CRAM Prolog algorithms,
to make them powerful enough for solving this task. For now, evaluation of the task
tree is difficult to do by CRAM Prolog predicates alone.

During evaluation of the scenarios I constantly encountered issues the longer my
samples were running, therefore I recommend splitting the evaluation in smaller
chunks to prevent data loss. I implemented function to export data from the REPL
to files on my hard drive, since it occasionally stopped working after several runs. I
reckon that the issue lies within recording the execution trace. It could be helpful to
attach custom cleanup mechanisms to the on-top-level-cleanup-hook, which is imple-
mented by the execution trace, or improve the recording and garbage collection of
the execution trace itself.

In the field of plan-based control of robotic systems, plan transformation is among
the more promising approaches for improving a robot’s behavior. Transformational
planning is applicable on CRAM plans in various ways already. Regarding the usage
of the task tree to manipulate plans after execution, it still takes a bit of development
and refactoring to accomplish the many advantages of transforming plans, but my
approach takes some steps into the right direction.

45

List of Figures

2.1 Kitchen Environment in the Bullet Simulation 8
2.2 IAI Kitchen environment . 8
2.3 Searching action result . 11
2.4 Fetching action result . 12
2.5 Task tree example . 17
2.6 TRANER Structure . 19
2.7 Example Transformation changing execution order 19
2.8 example transformed task tree . 20

3.1 Scenario 1 . 22
3.2 Scenario 3 . 22
3.3 Scenario 2 . 23
3.4 Scenario 1 task tree . 24
3.5 Scenario 2 task tree . 24
3.6 Scenario 3 task tree . 24
3.7 Scenario 1 transformed by both-hands-rule 25
3.8 Scenario 1 transformed by tray-rule . 26
3.9 Scenario 1 objects collected on tray . 27
3.10 Scenario 2 transformed by environment-rule 27
3.11 Generic transformation framework . 32

4.1 Histogram scenario 1 both-hands-rule 34
4.2 Histogram scenario 1 tray-rule . 35
4.3 Histogram scenario with 3 items and booth-hands-rule 36
4.4 Histogram scenario with 3 items tray-rule 37
4.5 Histogram scenario with 2 items and booth-hands-rule 37
4.6 Histogram scenario with 2 items tray-rule 38

47

List of Abbreviations

CRAM Cognitive Robot Abstract Machine
IAI Institut of Artificial Intelligence
IK Inverse Kinematic
Lisp List Processing Language
ROS Robot Operating System
RPL Reactive Programming Language
TRANER TRAnsformational PlanNER for Everyday Activity

49

Bibliography

Beetz, Michael (1992). Decision-theoretic Transformational Planning. Tech. rep. DFKI,
p. 22. URL: https://www.dfki.de/web/forschung/publikationen/renameFileForDownload?
filename=RR-92-07.pdf&file_id=uploads_1733.

— (2000). Concurrent Reactive Plans, Anticipation and Forestalling Execution Failures.
Vol. 1772. Lecture Notes in Computer Science. Springer. ISBN: 3-540-67241-9. DOI:
10.1007/3-540-46436-0. URL: https://doi.org/10.1007/3-540-46436-0.

— (2001). “Structured Reactive Controllers”. In: Autonomous Agents and Multi-Agent
Systems 4.1/2, pp. 25–55. DOI: 10.1023/A:1010014712513. URL: https://doi.
org/10.1023/A:1010014712513.

— (2002). “Plan Representation for Robotic Agents”. In: Proceedings of the Sixth In-
ternational Conference on Artificial Intelligence Planning Systems, April 23-27, 2002,
Toulouse, France. Ed. by Malik Ghallab, Joachim Hertzberg, and Paolo Traverso.
AAAI, pp. 223–232. ISBN: 1-57735-142-8. URL: http://www.aaai.org/Library/
AIPS/2002/aips02-023.php.

— (2013). “Cognition-Enabled Autonomous Robot Control for the Realization of
Home Chore Task Intelligence”. In: SOFSEM 2013: Theory and Practice of Com-
puter Science, 39th International Conference on Current Trends in Theory and Practice
of Computer Science, Špindlerův Mlýn, Czech Republic, January 26-31, 2013. Proceed-
ings, p. 106. DOI: 10.1007/978-3-642-35843-2_9. URL: https://doi.org/10.
1007/978-3-642-35843-2_9.

Beetz, Michael and Drew V. McDermott (1997). “Expressing Transformations of Struc-
tured Reactive Plans”. In: Recent Advances in AI Planning, 4th European Confer-
ence on Planning, ECP’97, Toulouse, France, September 24-26, 1997, Proceedings. Ed.
by Sam Steel and Rachid Alami. Vol. 1348. Lecture Notes in Computer Science.
Springer, pp. 64–76. ISBN: 3-540-63912-8. DOI: 10.1007/3-540-63912-8_76. URL:
https://doi.org/10.1007/3-540-63912-8_76.

Beetz, Michael et al. (2010). “Generality and legibility in mobile manipulation”. In:
Auton. Robots 28.1, pp. 21–44. DOI: 10.1007/s10514-009-9152-9. URL: https:
//doi.org/10.1007/s10514-009-9152-9.

Beetz, Michael et al. (2011). “Robotic roommates making pancakes”. In: 11th IEEE-
RAS International Conference on Humanoid Robots (Humanoids 2011), Bled, Slovenia,
October 26-28, 2011. IEEE, pp. 529–536. ISBN: 978-1-61284-866-2. DOI: 10.1109/
Humanoids.2011.6100855. URL: https://doi.org/10.1109/Humanoids.2011.
6100855.

Beetz, Michael et al. (2012). “Cognition-Enabled Autonomous Robot Control for the
Realization of Home Chore Task Intelligence”. In: Proceedings of the IEEE 100.8,
pp. 2454–2471. DOI: 10.1109/JPROC.2012.2200552. URL: https://doi.org/10.
1109/JPROC.2012.2200552.

Bothelho, S. and Rachid Alami (2000). “Robots that Cooperatively Enhance Their
Plans”. In: Distributed Autonomous Robotic Systems 4, Proceedings of the 5th Interna-
tional Symposium on Distributed Autonomous Robotic Systems, DARS 2000, October
4-6, 2000, Knoxville, Tennessee, USA. Ed. by Lynne E. Parker, George A. Bekey,
and Jacob Barhen. Springer, pp. 55–68. ISBN: 4-431-70295-4.

https://www.dfki.de/web/forschung/publikationen/renameFileForDownload?filename=RR-92-07.pdf&file_id=uploads_1733
https://www.dfki.de/web/forschung/publikationen/renameFileForDownload?filename=RR-92-07.pdf&file_id=uploads_1733
http://dx.doi.org/10.1007/3-540-46436-0
https://doi.org/10.1007/3-540-46436-0
http://dx.doi.org/10.1023/A:1010014712513
https://doi.org/10.1023/A:1010014712513
https://doi.org/10.1023/A:1010014712513
http://www.aaai.org/Library/AIPS/2002/aips02-023.php
http://www.aaai.org/Library/AIPS/2002/aips02-023.php
http://dx.doi.org/10.1007/978-3-642-35843-2_9
https://doi.org/10.1007/978-3-642-35843-2_9
https://doi.org/10.1007/978-3-642-35843-2_9
http://dx.doi.org/10.1007/3-540-63912-8_76
https://doi.org/10.1007/3-540-63912-8_76
http://dx.doi.org/10.1007/s10514-009-9152-9
https://doi.org/10.1007/s10514-009-9152-9
https://doi.org/10.1007/s10514-009-9152-9
http://dx.doi.org/10.1109/Humanoids.2011.6100855
http://dx.doi.org/10.1109/Humanoids.2011.6100855
https://doi.org/10.1109/Humanoids.2011.6100855
https://doi.org/10.1109/Humanoids.2011.6100855
http://dx.doi.org/10.1109/JPROC.2012.2200552
https://doi.org/10.1109/JPROC.2012.2200552
https://doi.org/10.1109/JPROC.2012.2200552

50 BIBLIOGRAPHY

Fedrizzi, Andreas et al. (2009). “Transformational planning for mobile manipula-
tion based on action-related places”. In: 14th International Conference on Advanced
Robotics, ICAR 2009, 22-26 June 2009, Munich, Germany. IEEE, pp. 1–8. URL: http:
//ieeexplore.ieee.org/document/5174701/.

Gateau, Thibault, Charles Lesire, and Magali Barbier (2013). “HiDDeN: Coopera-
tive plan execution and repair for heterogeneous robots in dynamic environ-
ments”. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, Tokyo, Japan, November 3-7, 2013. IEEE, pp. 4790–4795. DOI: 10.1109/IROS.
2013.6697047. URL: https://doi.org/10.1109/IROS.2013.6697047.

Hammond, Kristian J. (1990). “Explaining and Repairing Plans That Fail”. In: Artif.
Intell. 45.1-2, pp. 173–228. DOI: 10.1016/0004-3702(90)90040-7. URL: https:
//doi.org/10.1016/0004-3702(90)90040-7.

Kazhoyan, Gayane and Michael Beetz (2017). “Programming robotic agents with ac-
tion descriptions”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS 2017, Vancouver, BC, Canada, September 24-28, 2017. IEEE, pp. 103–
108. ISBN: 978-1-5386-2682-5. DOI: 10.1109/IROS.2017.8202144. URL: https:
//doi.org/10.1109/IROS.2017.8202144.

Kruse, Thibault and Alexandra Kirsch (2010). “Towards Opportunistic Action Selec-
tion in Human-Robot Cooperation”. In: KI 2010: Advances in Artificial Intelligence.
Ed. by Rüdiger Dillmann et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 374–381. ISBN: 978-3-642-16111-7.

Liberatore, Paolo (1998). “On the Compilability of Diagnosis, Planning, Reasoning
about Actions, Belief Revision, etc”. In: Proceedings of the Sixth International Con-
ference on Principles of Knowledge Representation and Reasoning (KR’98), Trento, Italy,
June 2-5, 1998. Ed. by Anthony G. Cohn, Lenhart K. Schubert, and Stuart C.
Shapiro. Morgan Kaufmann, pp. 144–155.

Maitin-Shepard, Jeremy et al. (2010). “Cloth grasp point detection based on multiple-
view geometric cues with application to robotic towel folding”. In: IEEE Interna-
tional Conference on Robotics and Automation, ICRA 2010, Anchorage, Alaska, USA,
3-7 May 2010. IEEE, pp. 2308–2315. DOI: 10.1109/ROBOT.2010.5509439. URL:
https://doi.org/10.1109/ROBOT.2010.5509439.

McDermott, Drew (1992). Transformational Planning Of Reactive Behavior. Tech. rep.
Mcdermott, Drew (1993). A Reactive Plan Language. Tech. rep.
Mösenlechner, Lorenz (2016). “The Cognitive Robot Abstract Machine: A Frame-

work for Cognitive Robotics”. PhD thesis. Technical University Munich, Ger-
many. URL: http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20160520-
1239461-1-3.

Mösenlechner, Lorenz and Michael Beetz (2011). “Parameterizing actions to have
the appropriate effects”. In: 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2011, San Francisco, CA, USA, September 25-30, 2011.
IEEE, pp. 4141–4147. ISBN: 978-1-61284-454-1. DOI: 10.1109/IROS.2011.6094883.
URL: https://doi.org/10.1109/IROS.2011.6094883.

— (2013). “Fast temporal projection using accurate physics-based geometric reason-
ing”. In: 2013 IEEE International Conference on Robotics and Automation, Karlsruhe,
Germany, May 6-10, 2013. IEEE, pp. 1821–1827. ISBN: 978-1-4673-5641-1. DOI: 10.
1109 / ICRA . 2013 . 6630817. URL: https : / / doi . org / 10 . 1109 / ICRA . 2013 .
6630817.

Mösenlechner, Lorenz, Nikolaus Demmel, and Michael Beetz (2010). “Becoming action-
aware through reasoning about logged plan execution traces”. In: 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, October 18-22, 2010, Taipei,

http://ieeexplore.ieee.org/document/5174701/
http://ieeexplore.ieee.org/document/5174701/
http://dx.doi.org/10.1109/IROS.2013.6697047
http://dx.doi.org/10.1109/IROS.2013.6697047
https://doi.org/10.1109/IROS.2013.6697047
http://dx.doi.org/10.1016/0004-3702(90)90040-7
https://doi.org/10.1016/0004-3702(90)90040-7
https://doi.org/10.1016/0004-3702(90)90040-7
http://dx.doi.org/10.1109/IROS.2017.8202144
https://doi.org/10.1109/IROS.2017.8202144
https://doi.org/10.1109/IROS.2017.8202144
http://dx.doi.org/10.1109/ROBOT.2010.5509439
https://doi.org/10.1109/ROBOT.2010.5509439
http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20160520-1239461-1-3
http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20160520-1239461-1-3
http://dx.doi.org/10.1109/IROS.2011.6094883
https://doi.org/10.1109/IROS.2011.6094883
http://dx.doi.org/10.1109/ICRA.2013.6630817
http://dx.doi.org/10.1109/ICRA.2013.6630817
https://doi.org/10.1109/ICRA.2013.6630817
https://doi.org/10.1109/ICRA.2013.6630817

BIBLIOGRAPHY 51

Taiwan. IEEE, pp. 2231–2236. ISBN: 978-1-4244-6674-0. DOI: 10.1109/IROS.2010.
5650989. URL: https://doi.org/10.1109/IROS.2010.5650989.

Müller, Armin (2008). “Transformational Planning for Autonomous Household Robots
using Libraries of Robust and Flexible Plans”. PhD thesis. Technische Universität
München. URL: http://mediatum2.ub.tum.de/node?id=645588.

Quigley, Morgan et al. (2009). “ROS: an open-source Robot Operating System”. In:
ICRA Workshop on Open Source Software.

Simmons, Reid G. (1988). “A Theory of Debugging Plans and Interpretations”. In:
Proceedings of the 7th National Conference on Artificial Intelligence. St. Paul, MN,
August 21-26, 1988. Ed. by Howard E. Shrobe, Tom M. Mitchell, and Reid G.
Smith. AAAI Press / The MIT Press, pp. 94–99. ISBN: 0-262-51055-3. URL: http:
//www.aaai.org/Library/AAAI/1988/aaai88-017.php.

Sussman, Gerald J. (1973). A Computational Model of Skill Acquisition. Tech. rep. Cam-
bridge, MA, USA: Massachusetts Institute of Technology. Dept. of Mathematics.
URL: http://hdl.handle.net/1721.1/12183.

Sussman, Gerald Jay (1975). A Computer Model of Skill Acquisition. New York, NY,
USA: Elsevier Science Inc. ISBN: 044400159X.

Tenorth, Moritz and Michael Beetz (2009). “KNOWROB - knowledge processing for
autonomous personal robots”. In: 2009 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, October 11-15, 2009, St. Louis, MO, USA. IEEE, pp. 4261–
4266. ISBN: 978-1-4244-3803-7. DOI: 10.1109/IROS.2009.5354602. URL: https:
//doi.org/10.1109/IROS.2009.5354602.

— (2010). “Priming transformational planning with observations of human activ-
ities”. In: IEEE International Conference on Robotics and Automation, ICRA 2010,
Anchorage, Alaska, USA, 3-7 May 2010, pp. 1499–1504. DOI: 10.1109/ROBOT.2010.
5509161. URL: https://doi.org/10.1109/ROBOT.2010.5509161.

Wyrobek, Keenan A. et al. (2008). “Towards a personal robotics development plat-
form: Rationale and design of an intrinsically safe personal robot”. In: 2008 IEEE
International Conference on Robotics and Automation, ICRA 2008, May 19-23, 2008,
Pasadena, California, USA. IEEE, pp. 2165–2170. DOI: 10 . 1109 / ROBOT . 2008 .
4543527. URL: https://doi.org/10.1109/ROBOT.2008.4543527.

http://dx.doi.org/10.1109/IROS.2010.5650989
http://dx.doi.org/10.1109/IROS.2010.5650989
https://doi.org/10.1109/IROS.2010.5650989
http://mediatum2.ub.tum.de/node?id=645588
http://www.aaai.org/Library/AAAI/1988/aaai88-017.php
http://www.aaai.org/Library/AAAI/1988/aaai88-017.php
http://hdl.handle.net/1721.1/12183
http://dx.doi.org/10.1109/IROS.2009.5354602
https://doi.org/10.1109/IROS.2009.5354602
https://doi.org/10.1109/IROS.2009.5354602
http://dx.doi.org/10.1109/ROBOT.2010.5509161
http://dx.doi.org/10.1109/ROBOT.2010.5509161
https://doi.org/10.1109/ROBOT.2010.5509161
http://dx.doi.org/10.1109/ROBOT.2008.4543527
http://dx.doi.org/10.1109/ROBOT.2008.4543527
https://doi.org/10.1109/ROBOT.2008.4543527

	Declaration of Authorship
	Abstract
	Zusammenfassung
	Introduction
	General Approach and Research Questions
	Plans
	Plan Transformation

	Contributions
	Related Work
	Reader's Guide

	Foundations
	ROS
	CRAM
	Projection Environment
	Designators
	Process modules and atomic plans
	Self-Recovering Plans
	CRAM Prolog Reasoning
	Execution Traces and the CRAM Task Tree

	Transformational Planning

	Methods and Implementation
	Task tree analysis, Prolog predicates and transformations
	Scenarios
	Task tree analysis
	Transformations
	Applicability and input schema

	Generic CRAM plan transformation framework

	Experimental Evaluation
	Evaluation of Transformation Experiments
	Evaluation Summary

	Conclusion
	Summary
	Discussion
	Recommendations on Future Work

	Bibliography

