CRAM

Design & Implementation of a Reactive Plan Language

Tobias Christian Rittweiler

May 5, 2010

Abstract

CRAM, the Cognitive Robotic Abstract Machine, is a toolbox aimed at
the design, implementation, and deployment of cognition-enabled mobile
robots. Its core consists of the CRAM Plan Language (CPL) which is
a new incarnation of the Reactive Plan Language (RPL) by McDermott
et al. CPL is a modernized, truly Common Lisp based, compiled domain
specific language to express robots’ execution plans as concurrent reactive
control programs with rich control structures for perception-guided control
and failure detection, classification and handling. In particular, it features
a multithreaded architecture to benefit from the concurrency available
in today’s multiprocessor systems. This bachelor thesis will cover the
rationale, details of implementation, and outlook after a major revision of
the underlying multithreaded architecture. Furthermore, it will contain
an attempt at a coherent description of the language, including usage
examples and additional tools that may be useful to its user.

1 Introduction

CrAM (Cognitive Robot Abstract Machine) is a
set of distinct, yet highly interconnected tools that
are specially designed to enable robots to per-
form mobile manipulation and cognition-enabled con-
trol, for example to empower mobile agents to per-
form everyday manipulation tasks in human environ-
ments like a kitchen. See fig.1 for one of the
current research objects making use of CRAM in
the laboratories of the Intelligent Autonomous Sys-
tems Group at the Technical University of Mu-
nich.

CRAM sits on top of the Ros middle-ware which provides
a distributed framework of nodes that are interconnected
to share services with each other. Fig.2 depicts the archi-
tecture employed in CRAM. All its building blocks are implemented inside ROS

Figure 1: “Rosie”

Modules

CPL CRAM-kernel o KnowRob
Extension KnowRob Reasoner Extension
Modules

= SWI Prolog ‘I

i

population
assert Belief State of the belief

= CPL - CRAM Plans rove [IECHject e Saneon o

query - Entity designators

‘ LISP - KnowRob knowledge base

activation/deactivation/parametrization using ActionLib abstraction
1 1

Perception Navigation Manipulation

Figure 2: Architecture of CRAM

Program —
o oW
computable predicates

ROS interface

4

nodes, and it hence benefits from the modular and extensible architecture of
Ros. As can be seen in fig.2, the core of CRAM is very lightweight; it consists
of the CrRAM Plan Language and interfaces to provide plans access to the belief
state, to perception, to navigation, and to manipulation facilities like the arms

of “Rosie” (fig.1). In detail:

CrAM Plan Language (CPL)

CpL is very expressive behaviour specification language that unifies con-
trol programs to be executed and plans to be reasoned about into the
same language — essentially by allowing the programmer to annotate his
programs with reasoning information. This unification allows to infer se-
mantics of the code being executed and to use this information, coupled
with other resources, to verify that a robot achieved all its goals, to detect
potential flaws in the execution plan by means of projection, and possibly
to repair it based on the projected outcome.

The Cram Plan language can be seen as a successor, or a modern reimple-
mentation, of the Reactive Plan Language (RPL).[2] Like RPL, it is based
on the idea of semantically-annotated plans to support high-level reason-
ing and plan transformation. Furthermore, its implementation is based on
RPL concepts like tasks, and fluents. However, RPL was implemented as
an interpreted, multitasking-emulating language on top of McDermott’s
dialect Nisp.[3] Contrarily, CpL is implemented as a compiled, natively-
multithreaded language on top of Common Lisp.

CpL itself consists of three parts:

1. Tasks, which represent threads of execution in a plan to, ultimatively,
achieve goals like “navigate to position (z,y)”; tasks are organized in trees
as it’s common that a task requires additional sub tasks for its accom-
plishment.

2. Fluents (and fluent-nets), which act as a synchronization abstraction for
convenient inter-task notification on value changes — an essential ingredient
of autonomous agents, considering their need to react on exogenous events.

3. Control structures of the language, which are implemented on top of tasks
and fluents.

CrAM Designators

Designators are symbolic descriptions of entities such as objects (mugs,
plates, ...), locations or parameterizations of actions. Designators unify
symbolic and grounded concepts in a plan with the parameterization of
the lower level components, which is necessary to efficiently reason about
the execution of plans.[4]

CRAM Process Modules

Process Modules provide interfaces to lower-level control processes that
can be activated, deactivated and parameterized by the high-level control
program. They resolve symbolic properties of designators and generate the
parameterization of the low-level control routines, by taking the current
belief state into account.[4]

CrAM Execution Trace

The execution trace records internal state of the control program and
the belief state at any point in time. The information is useful not only
for debuggability but also provides the mechanisms for complex monitor-
ing and failure handling that is not based on local failures and exception
handling but on the expressive formulation of error patterns in first order
logics.[4]

CrAM Reasoning

The reasoning component includes a bridge between CPL and KnowRob[10],
an extended knowledge base, by incorporating the foreign language inter-
face of Swi-Prolog into Common Lisp. It further includes a reasoning
component based on the RETE algorithm and a library of predicates that
allow for reasoning about plan execution, based on the execution trace.[4]

This bachelor thesis will discuss implementation issues, and document design
decisions of the CrRAM Plan Language. It purports to serve the following two
purposes: a) it shall assist the author’s superviser in wrapping his head around
the new implementation, and, more importantly, it shall act as guide for further
development; b) it shall be passed on to fellow students and collegues to help
them get started on CRAM.

2 CPL — The Implementation

As mentioned in the introduction, the CRAM Plan Language is implemented on
top of two concepts called tasks and fluents. In the next section we will first
provide an overview of these two concepts, and how their combination leads
to a domain specific language that expresses execution as concurrent reactive
plans. In the sections following, we will then discuss a major revision of the
multithreaded architecture underlying tasks. In particular, we will argue why
a revision was needed and we will illustrate problems and pitfalls encountered
during the reimplementation. Finally, we will provide insights on the remaining
work to be done.

2.1 Concepts

We will start with a brief description of what fluents are. Although they play
only a marginal role with respect to this thesis, they still represent an essential
part of the system.

A fluent contains a value. Tasks can wait on a fluent, and are notified' in
case the value changes (see fig.3). More interestingly, multiple fluents can be
combined in what we call a fluent network: essentially, a fluent bases its value on
the value of another fluent and subscribes to that other fluent. If the other flu-
ent changes its value, this change will propagate to the subscribed fluent whose
value will then be recalculated (again, see fig.3).

As robots have to react on exogenous events (ideally in an intelligent way), an
important use of fluents is to map such events into the system. However, fluents
are actually used throughout the system — everywhere where values change over
time and where a change of value may lead to change in behaviour.

Plans are control programs that are annotated with enough semantic infor-
mation that they can be reasoned about. As this thesis does not discuss the
high-level and reasoning aspects of CRAM, we can regard plans simply as de-
scriptions of behaviour. Internally, they try to achieve some goal by splitting
the achievement into tasks. Conversely, a task represents a thread of execution
in a plan. In fact, tasks are precisely that: threads plus appropriate metadata.
As tasks are often partitioned again into subordinated tasks, tasks are naturally

IBoth edge-triggered and level-triggered notifications are supported.

(setf value)

propagate
fluent fluent

trigger trigger trigger tngger trigger

HEE G

Figure 3: Fluents, schema.

organized in trees, or rather hierarchies?: a task is in control of its sub tasks; it
determines which of its sub tasks are crucial (and must be accomplished for the
accomplishment of the task at a whole), it determines how to react on failures
of sub tasks, or what to do with sub tasks which became superfluous.

For purpose of this thesis (again we’re neglecting semantic annotation), the
CrAM Plan Language can now be seen as a language which allows to specify
task hierarchies conveniently and concisely. In particular, it specifies the rela-
tions between a task, its sub tasks, and among the sub tasks. Each CPL control
structure (which will be described in detail in section 3.1.3) represents a par-
ticular variant of such a relation. And by combining the control structures, a
user can thus achieve complex task hierarchies with complex inter-dependent
behaviour. CpL includes variants such as:

e All sub tasks should be accomplished.

e It’s enough if one of the sub tasks is accomplished.

e Sub tasks must be accomplished according to a particular partial order.
e Suspend some of the sub tasks, do something else, resume tasks.

And many more. To enforce such a relation, a task subscribes to its sub tasks’
status fluent which contains the state a task is in. Thus if one of the sub tasks
changes its status (e.g. to indicate it’s accomplished), the subscribed parent will
be notified and can proceed as desired — for instance, to wait again on the fluent
until all other sub tasks are accomplished, too, or to shut down remaining sub
tasks and change its own status to accomplished.

2To describe the relation between a task and its subordinated task we sometimes use the
terms “task” and “sub task”, and other times “parent task” and “child task”. The former
expresses their hierarchical role, and the latter expresses their organization as data structure.

:CREATED

wake-up
execute /—\
suspend
:RUNNING :SUSPENDED
fail evaporate
return evaporate
:SUCCEEDED :FAILED :EVAPORATED

Figure 4: A task’s state diagram

As can be seen, getting tasks right is all about getting inter-task communication
right. And since tasks are executed in threads, it’s actually about getting inter-
thread communication right — with the caveat that this communication should
mostly be performed implicitly without user’s direct notice.

Inter-task communication is tied to state transitions in tasks. This makes sense
as we said that a task is supposed to control its sub tasks, and inter-task com-
munication is the means for a task to induce state transitions in its sub tasks.
Fig.4 illustrates the interplay of states in a task. Notice that there are three
exit states: :succeeded means the task was accomplished, :failed means the
task could not be accomplished, and :evaporated means the task became su-
perfluous and was killed by its parent.

2.2 Old Task Implementation

As described previously, the key part in implementing the CRAM Plan Language
is the intercommunication between tasks belonging to the same hierarchy. The
old implementation used the function interrupt-thread for that purpose, a
common extension provided by multithreaded Common Lisp implementations.
For example, a parent task would have executed the following to evaporate its
children:

(dolist (child (child-tasks *current-task*))
(interrupt-thread child #’(lambda ()
(signal ’termination))))

interrupt-thread interrupts the passed thread and makes it execute the passed
function instead of what it was executing before — in this case, to signal a con-
dition which indicates that the child is supposed to be torn down due to evap-

oration. A suspension was requested analogously but by a condition named
suspension. Fach task was executed in a context where appropriate handlers
for termination and suspension were active. This implementation technique
is neat in so far as it only involves minimal code, and reuses the ingredients of
the Common Lisp maximally.

Albeit neat, this implementation technique is seriously flawed.

The problem is that interrupt-thread works by interrupting the passed thread
totally asynchronously, at whatever point it is currently executing. Conse-
quently, a task could have been evaporated, or suspended, at any time. And
evaporation leads to unwinding, suspension leads to waiting — at any time.
There are times, however, where an unexpected unwinding, or waiting, would
result in rather dire consequences:

1. What if a a task is forced to unwind from amid a critical section?
Likely, it will leave inconsistent state behind, for instance, in the object
being modified in the critical section.

2. What if a task is forced to unwind while executing a cleanup clause of
unwind-protect?
At best, we’ll leak some ressource. Or, again, inconsistent state.

3. What if a task is suspended within a critical section?
The suspended task will continue to hold some lock. If another task wants
to acclaim that lock, it won’t be able to do so until the suspended task is
resumed. But if the other task is the one responsible for waking up the
suspended task, a dealock will occur.

As implementations usually provide some means to disable the receiving of in-
terrupts for the duration of some forms, all of these issues can in principle be
catered for. And there may even be ways to proactively help the user address
these issues: For example, software transactional memory may be used to solve
the first issue and prevent inconsistent state by rolling back state changes before
unwind; unwind-protect could be implemented to disable interrupts while ex-
ecuting the cleanup forms to obliterate the second issue®; and for addressing the
third issue, an abstraction could be provided that a) allows the user to specify
safe places to unwind to on suspension, and b) how to rewind again on wake up
— akin to Scheme’s dynamic-wind.

However, all these mechanisms do not really change the crucial properties that
seem to be inherent in asynchronous interrupts:

3There may be situations where a cleanup form is so complex and may involve so much time
that it should in fact be interruptible. For that purpose, implementations should provide a
means to locally reenable interrupts in an unwind-protect cleanup form. We argue, however,
that it strikes us as the better policy to disable interrupts by default, and have the user enable
them explicitly, rather than the other way around — if only to cope with users’ mental model
of unwind-protect.

e To reiterate as it’s so important: asynchronous interrupts can happen any
time, between and in-between any line of code.

e Interrupt-safe code does not compose. Even if a piece of code considered
on its own deals with interrupts sensibly, does not necessarily mean that
“sensible” transfers to all usages.[9]

Consequently, interrupt-safety cannot be localized into a small, heavily audited
code area, but would have to be catered for across the whole source base; not
only in user code, but also in the sources of the implementation, in third-party
code, literally everywhere. Programming would require whole-world knowledge
— those who have not ascended yet would have to program in angst and sorrow
or, alternatively, in ignorance.*

Angst and sorrow is not mere rhetorics. As a case in point, we want to de-
scribe a puzzling phenomenon of the old implementation: when running the
test suite, every now and then a frightning “compilation aborted” message was
printed to the screen without any further information. It turned out that timing
issues in one of the test cases spured an evaporation right during the compu-
tation of the discriminating function which typically involves compilation in a
CLos implementation. The evaporation caused unwinding out of the compila-
tion which thus caused the message to be printed.

Another case in point. Let’s revisit our previous code snippet:

(interrupt-thread thread #’(lambda ()
(signal ’termination)))

Notice that the above is tantamount® to the following Java code
thread.stop(new Termination());

Thread.stop (and Thread.suspend for that matter) were deprecated 10 years
ago. In [1], the rationale behind that decision is explained; it can be summarized
with one quote: “In sum, it just isn’t practical.”

2.3 New Task Implementation

We concluded the last section by comparing Common Lisp’s interupt-thread
to Java’s Thread.stop. As Java also provides a Thread.interrupt, it begets
the question how Thread.interrupt differs from interrupt-thread that it’s
not plagued by the same issues. In Java, an InterruptException is not thrown
at arbitrary times, but only in predefined places. The user is supposed to extend

4The only real way out, it seems, would be to disable interrupts globally, or for vast areas
of code. Of course, that would render the implementation technique being discussed pretty
useless.

5We’re neglecting the fundamental difference that signaling a condition in Common Lisp
does not necessarily lead to stack unwinding.

this set of places appropriately. Thus interrupts in Java are not asynchronous.

In general, programmatic use of interrupts should be dealt with by whitelisting
rather than blacklisting: define a set of places where interrupts are supposed to
be triggered — enough to be adaquately responsive, not too many not to incur
too much overhead. The obvious advantage is that the problem of having to
deal with interrupts all over the place will be gone immediately. Interrupts will
now be localized.

SBCL includes a feature called deadlines® which could be summarized as global
(or thread-local) timeouts based on the aforementioned whitelisting approach.
A deadline is an absolute time pointing into the future, and a couple of internal
functions check whether current time exceeds the current deadline. If that’s the
case, they will signal a condition of type deadline-timeout. These functions
include get-mutex, condition-wait, wait-on-semaphore, and serve-event
(the recursive event loop used for I/O). An restart is associated with the condi-
tion deadline-timeout to defer the just expired deadline again into the future.
On behalf of that restart, one can use deadlines to periodically execute a func-
tion and continue the original computation after that function has run. This is
what the new task implementation is based on.

Indeed the new implementation works as follows:
1. Each task is executed with the deadline mechanism being activated.

2. Each task establishes a handler for deadline-timeout that invokes the
task’s event loop.

3. The event loop looks for new messages in a mailbox:

6Caveat: deadlines aren’t actually exported from a public package, and are not available
on all platforms (as of SBcrL 1.0.38.)

e If no new message has arrived, the restart is invoked to continue the com-
putation where the deadline was triggered. The restart also reinstalls the
deadline so that we will enter the event loop again after a while.

e If a new message has arrived, it’s processed. The message encodes another
task’s request for evaporation, suspension, or wakeup.

— An evaporation request leads to tear down which includes: a) sending
evaporation requests to the current task’s children, b) changing status to
:evaporated, and c) exiting.

— A suspension request is first propagated to the current task’s children,

then the task simply stays in the event loop and waits on the mailbox for
new messages.

— Notice how the “current” continuation resides on the stack and is invokable
through the restart during the time a task is suspended.

— Hence a wake up means nothing more than invoking said restart (after the
wake up was propagated to the current task’s children, of course.)

The implementation can easily be illustrated with the following 60 lines of code:”

(defstruct (task (:constructor make—task (&key name function children)))
name

function

children

(status :created)

(mailbox (sb—concurrency :make—mailbox)))

(defvar *current—taskx nil)
(defconstant +period+ 0.01)

(defun change—status (task new—status)
(setf (task—status task) new—status))

(defun execute (task)
(sb—thread :make—thread
#’(lambda ()
(let ((xcurrent—taskx task))
(change—status task :running)
(call —with—event—loop task (task—function task))))))

(defun call —with—event—loop (task thunk)
(handler—bind ((sb—sys:deadline—timeout
#’(lambda (c)

"The code requires an SBcL version of 1.0.38 or higher.

10

(event—loop task
#’(lambda ()
(sb—sys:defer—deadline +period+ c¢))
#’(lambda ()
(return—from call—with—event—loop))))))
(sb—sys:with—deadline (:seconds +period+)
(unwind—protect (funcall thunk)
(propagate—message task :evaporate)))))

(defun event—loop (task continue finish)
(let ((mailbox (task—mailbox task))
(waitp nil))
(loop
(multiple—value—bind (message received?)
(if waitp
(values (sb—concurrency:receive—message mailbox) t)
(sb—concurrency : receive —message—no—hang mailbox))
(when received?
(process—message task message))
(ecase (task—status task)
(:running (funcall continue))
(:suspended (setq waitp t))
(:evaporated (funcall finish)))))))

(defun process—message (task message)
(propagate—message task message)
(ecase message
(:suspend (change—status task :suspended))
(: wakeup (change—status task :running))
(:evaporate (change—status task :evaporated))))

(defun propagate—message (task message)
(dolist (child (task—children task))
(sb—concurrency :send—message (task—mailbox child) message)))

Notice that we haven’t addressed failure handling neither in the description nor
in the exemplary implementation. The reason is that failures aren’t actually
implemented by messages, but implicitly through join-task (see section 3.1.1).

Further notice that the exemplary implementation does not address the problem
of suspending in mid of a critical section. For example, a deadline signaled in
condition-wait may invoke a task’s event loop while holding the lock associ-
ated with the relevant condition variable. And, as fluents are implemented on
top of condition variables, getting this issue right was a requirement right from
the beginning. It was one of the aspects in the real implementation which was

11

a tad bit tricky to implement correctly. Let’s sketch how we did it:

1. We provide a macro retry-after-suspension which is supposed to un-
wind out of a critical section right before suspending and to re-execute the
critical section on wake up. Essentially it’s an adaption of the dynamic-wind
idea from page 7.

2. retry-after-suspension registers a callback which is invoked when the
event loop processes a suspension request.

3. This callback performs three things in the following order:

(a) It unwinds out of the body of retry-after-suspension.

(b) It reestablishes necessary context which was lost due to the unwind; e.g. it
reestablishes the deadline and makes up the deadline’s associated restart.

(¢) It continues the suspension process so we will eventually end up back in
the event loop waiting on the mailbox.

Excursion

While trying to implement retry-after-suspension for the first time, we were
majorly screwed by an ideosyncracy of Common Lisp’s condition system. Kent
Pitman, author of the chapter about the condition system in the Common Lisp
ANst standard, writes in [6]:

Probably the most controversial semantic component of the Com-
mon Lisp condition system is what has come to be called the "con-
dition firewall". The idea behind the condition firewall is that a
given handler should be executed in an environment that does not
"see" intervening handlers that might have been established since
its establishment.

And, indeed, the ANsrI standard is very explicit on the issue:[7]

Handlers are invoked in a dynamic environment equivalent to
that of the signaler, except that the set of active handlers is bound
in such a way as to include only those that were active at the time
the handler being invoked was established.

Let’s try to illustrate the exact meaning and its consequences on behalf of an
example:

12

1. (handler-case
(handler-bind ((warning
#’ (lambda (c)
(declare (ignore c))
(error "Got a warning! Turned it into an error."))))
(warn "A warning:"))
(error (e)
(declare (ignore e))
(format t "Caught an error.~%")))

2. (handler-bind ((warning
#’ (lambda (c)
(declare (ignore c))
(error "Got a warning! Turned it into an error."))))
(handler-case
(warn "A warning.")
(error (e)
(declare (ignore e))
(format t "Caught an error.~%" c c))))

In the first form, the warning is first turned into an error, the error is caught
by the handler-case and thus only a message is printed.

In the second form, however, the handler established by handler-case is actu-
ally out of scope when executing the handler established by handler-bind — so
the error will propagate through and cause an invocation of the debugger.

The specified behaviour makes sense as it ensures that the scope of handlers
with respect to each other is lexical: a handler X that is established textually
before Y, will will only see those handlers that appeared textually before X.
This is an important property as the handler X may in fact not know about the
exact state of affairs down its line. (As a special case, consider how easily one
could be tricked into endless recursion between a handler-bind and a nested
handler-case if the “condition firewall” were not in place.)

So what’s the matter?

Let’s recall that we enter the event loop through a deadline handler. And this
deadline handler is the outermost handler within a task’s execution as can be
witnessed from the exemplary implementation above. So a consequence of the
“condition firewall” is that we cannot reuse Common Lisp’s condition system
to communicate between the event loop and implementation details (e.g. set
up by macros like retry-after-suspension) down the stack. Any handler
established down the stack will be out of scope in the event loop.

This property of Common Lisp’s condition system puts a pretty harsh restric-

tion on using deadlines as a way to invoke an event loop periodically. Although
we see the new task implementation as described in this section as a major

13

improvement over the previous implementation, we will propose a slightly dif-
ferent implementation strategy in the next section which will also overcome the
“condition firewall.”

2.4 Future Work

To recapitulate: In section 2.2, we argued how problematic the previous imple-
mentation was due to its use of asynchronous interrupts. We argued that trying
to tame asynchronous interrupts resembles the duty of Sysiphus because to rea-
son about them would require knowledge about the whole software stack. We
compared the old implementation technique to Java’s Thread.stop which has
long been deprecated for these reasons. In section 2.3, we argued that program-
matic use of interrupts (like we intend to do) should be based on whitelisting
rather than blacklisting. We provided Java’s interrupt mechanism as an exam-
ple for how it’s supposed to be done. Further, we proposed SBCL’s deadline
mechanism to be such a mechanism. This begets the question now in how far
exactly deadlines compare to Java interruptions.

Both, deadline and Java interrupts, are raised in a handful of predefined places
— in fact, almost the same places. However, Java’s InterruptException is a
checked exception, so it’s an explicit and permanent part of the places’ API (even
enforced by the compiler). The crux is that handling InterruptException is
not only enforced for direct callers but for all callers. It follows that a Java
programmer knows precisely where in a system interrupts can occur. The
same cannot be said on the Lisp side: a deadline can, for example, expire
within get-mutex no matter what mutex was passed to it. Consequently,
a deadline-timeout can actually be signaled from within any function that
makes use of synchronization internally (or uses one which does).

And these internal details really do leak. Case in point: a semaphore is imple-
mented® on top of mutexes and condition variables. So a deadline-timeout
may be signaled within wait-on-semaphore while holding the mutex that ac-
tually is completely internal to the semaphore. If we enter the event loop under
such circumstances, and process a suspension request, we just rendered the
semaphore unusable — and danger awaits. Notice that our hands as user are
tied on the issue; we cannot just modify the implementation of semaphores to
use our retry-after-suspension. It follows that any direct, or indirect use of
semaphores is liable to lead to problems.® Any dream of reasonability is gone.

Notice that in the old task implementation, the processing of requests could

8 As of SscrL 1.0.38.

9We were bitten by it: spawning a thread, thus executing a task, uses a semaphore inter-
nally. As the semaphore is purely internal, no deadlock was warranted. However, problems
arose nontheless because a parent task could enter its event loop before its child was properly
set up. We solved this issue by locally disabling deadlines using without-scheduling (see
section 3.1.1 for a description.)

14

happen anywhere. In the new task implementation, it can only happen where
synchronization or I/0 is directly or indirectly used. So it’s definitively a step
forward. However, for the reasons of unpredictability (and for the problems due
to the “condition firewall” discussed in the previous section), we actually dimiss

deadlines as a viable implementation strategy for our purpose.

10

We will now conclude our discussion of the implementation with outlining an
approach which differs only slightly but to great effect:

e We still want to periodically enter a task’s event loop where requests are

received and acted upon.

e However, instead of using deadlines provided by SBCL for that purpose,

we propose to essentially implement our own deadline mechanism (which
will then be used in our code only):

— We subclass, or write wrappers as appropriately, for locks, condition vari-
ables, semaphores. These wrappers check whether our deadline expired.

— We check for expiration in appropriate places like waiting on a fluent.

— If necessary, we add loop abstractions for the user which internally check
the deadline. (So the user does not have to be bothered with checking for
expiration himself.) As plans usually involve fluents en masse, we suppose

it’s a rather rare circumstance.

— If our deadline expires, we won’t signal a condition, but either directly

invoke the event loop, or go over the indirection of a special variable.

e As we implement deadlines ourselves, the now current architecture can

mostly be kept just as is.

The advantages of the outlined approach include:

1.

We can make use of retry-after-suspension in the wrappers appropri-
ately.

. Since it’s all wrapped up and the deadline mechanism is provided by our-

selves, our code can become portable across implementations again.

The event loop will only be triggered by our own code, so reasoning won’t
require whole-world knowledge.

We circumvent the problems induced by the “condition firewall”.

10To be precise: We dismiss the implementation of deadlines as of Sbcl 1.0.38.

15

3 CpPL - A User’s Guide

The following section is probably the section most interesting to future users
of CrRAM and CPL. A note of caveat to these users: the following descriptions
should provide a good head start, but CRAM was still in quite an early stage
of existence as of the writing of this thesis. We’re pretty certain, though, that
the essential bulk of behaviour will stay as described here, details may differ
slightly, however.

3.1 The Language'!
3.1.1 Tasks

[Variable] *current-task*

Inside a task, contains the task object being executed. Otherwise, nil.

[Classes| abstract-task, toplevel-task, task

A toplevel-task represents the root of a hierarchy of tasks.

[Function] make-task &key name function

Create an object of class task named name. If executed, it’ll execute function,
a thunk.

[Function| execute task

Spawn a thread, and have it execute the function associated with task. This
induces a status transition from :created to :running.

[Accessor| child-tasks task
Return all the children of task.

[Accessor| status task

Returns a fluent whose value is the current status of task.

Example Being a fluent, one can easily wait for status transitions of a task.
The following will wait until a task, which was just created, will actually excute,
or until a task, which was suspended, will execute again:

(wait-for (fl-eq (status task) :running))

' This section is mostly a reference. For a description on the concepts involved, please refer
to section 2.1.

16

[Type| status-indicator
One of

e :created,

e :running,

e :suspended,

e :succeeded,

e :evaporated, or

e :failed.

[Constants] +dead+, +done+, +alive+

A task is...

dead if it either succeeded, failed, or was evaporated.

done if it either succeeded, or was evaporated.

alive if it either has not run yet, is currently running, or is suspended.

[Accessor| result task

Return the result of the task. For multiple values, this function also returns
multiple values. Setfable.

[Function| join-task task

Wait until task has finished.
When task fails, this function resignals the failure condition.
When task succeeds, this function returns its result values as multiple values.

17

[Function] suspend task &key reason sync

Sends a suspension request to task. This request will be propagated to all its
children (and then to their children, and so on.)

For debugging purposes, reason is a string which will displayed as part of the
logging output described in section 3.2.2.

By default, the current task (that is the caller of suspend) won’t wait until task
really becomes suspended. If sync is true, the current task will wait until task
and all its children are suspended.

Example Notice the difference between

(progn (suspend task)
(wait-for (fl-eq (status task) :suspended)))

and
(suspend task :sync t)

is that the former will only wait until task becomes suspended, while the latter
will wait until task and all its children become suspended.

[Function] wake-up task &key reason sync

Sends a request to task to wake up from an earlier suspension request. The
request will be propagated appropriately. See suspend for detailed information.

[Function] evaporate task &key reason sync

Sends an evaporation request to task. The request will be propagated appropri-
ately. See suspend for a discussion of the parameters reason, and sync.

[Macro]| without-scheduling &body body

Execute body without entering the current task’s event loop periodically. This
inhibits any acting on inter-task events like suspension, or even evaporation.
without-scheduling should hence be used with care, and only for small periods
of time.

18

[Macro] on-suspension when-suspended-form &body body

During the execution of body, execute when-suspended-form whenever the cur-
rent task is going into suspension.

The following restrictions apply:

1. The dynamic environment in which when-suspended-form will be executed,
is undefined. Except:

2. when-suspended-form is executed with scheduling disabled.

3. Non local exits out of when-suspended-form are prohibited.

Example The common scenario for needing on-suspension is when an action
is performed that is going to take a while, like navigating to some coordinates.
Before the task falls into sleep, it has to make sure to stop the robot’s gears:

(on-suspension (stop)
(move-to-point x y))

[Macro| retry-after-suspension &body body

Execute body, and return its values.

In case the current task is suspended during the execution, body will be unwound
completely, and the suspension will take place outside of body. After wake up,
body will be executed again.

Example The intended use case is to unwind out of critical sections to ensure
that a task won’t suspend while holding on some lock:

(retry-after-suspension
(with-lock *lock*

(condition-wait *condvar* *lockx)

ce))

Notice how the design of condition variables make them particularly prone to
this kind of scenario. Further notice that using without-scheduling is not an
option as it would make the task completely unresponsive during the wait.

19

[Macro| define-task-variable name &optional global-value docstring
&key type init-function

Define a binding for name as a special variable, and in particular as a task
variable. global-value is the variable’s global value; if not given, the variable
will be unbound. docstring is the variable’s associated documentation string.
type is, optionally, its globally proclaimed type.

A task variable is a binding that is established and initialized right before exe-
cution of a task. The binding is task-local, meaning that assignment to it won’t
affect the variable’s global binding, or bindings within other tasks.

The initialization is performed by init-function which must be a function of
three parameters: the task object going to be executed, the task object of the
parent task, and the previous value of the variable name in the parent. In case
the first argument is a toplevel-task, the second argument will be nil, and
the third one will be the global value.

Task variables can hence be used for different purposes:
1. to initialize a variable based on the task object to be executed.
2. to initialize a variable based on the task’s parent.
3. to inherit a task variable’s value from its parent.

In case init-function is not given, the default behaviour is to inherit the value
from the parent task.

Example In section 3.2.2, a logging facility will be described which prints
timestamps relative to the start time of the containing toplevel-task. Ob-
viously, for that to work out, we have to store that start time somewhere where
all sub tasks (and only they) will see it. Notice how Lisp special variables cannot
be used to solve this problem.

(define-task-variable *zero-real-time* nil
"Base timestamp to compute relative real-time timestamps from.
This variable gets its value from the top-level task, all
sub tasks will just inherit it."
:type (or null timestamp)
:init-function
#’(lambda (task parent-task previous-value)
(declare (ignore task parent-task))
(or previous-value (current-timestamp :real))))

20

3.1.2 Fluents

[Classes] fluent, value-fluent, pulse-fluent, fluent-net

Fluents come in three flavors, value-fluent, pulse-fluent and fluent-net.

value-fluent
represents a fluent with an associated value which can a) be changed, and
b) be waited for. A value-fluent is what is commonly stored into an
object’s slots for values whose changes are supposed to be tracked — just
like the status slot in task objects.

pulse-fluent
represents a special kind of fluent without an explicitly associated value (it
only ever is nil, or t) that is used in special wait scenarios. In particular,
it overcomes the ABA problems inherent in waiting on a value-fluent.
See f1l-pulsed for details.

fluent-net
represents an interconnected network of fluents where a value change of
one fluent propagates through the network by possibly causing neighbors
to change their values, too. A fluent-net is commonly used to track
specific aspects of fluent changes, and, as the examples below will show,
they make it very convenient to work with fluents in general.

[Function| make-fluent &key name value

Create an object of class value-fluent named mame with an initial value
of walue. No explicit constructors are provided for pulse-fluent, and
fluent-net.

[Accessor| value fluent

Return the value of fluent.

[Accessor| (setf value) new-value fluent

Sets the value of fluent to new-value. Implicitly pulses the fluent.

21

[Function] pulse fluent
Trigger fluent.
e Tasks waiting on fluent are notified that the fluent’s value has possibly

changed; these waiters will consequently wake up if the fluent contains a
non-nil value now.

e fluent-nets built on top of fluent are notified to recalculate their values
and propagate the pulse through the net. This, of course, can then lead
to even more tasks to wake up.

[Function]| wait-for fluent &key timeout

Block the current task until the value of fluent becomes non-nil. If timeout is
specified, waits for at most timeout seconds. In case fluent becomes non-nil, t
is returned. In case timeout expired, nil is returned.

[Macro] whenever (fluent) &body body

Whenever fluent becomes non-nil, execute body in an implicit block named
nil. If fluent is of type value-fluent, and is changed multiple times during
the execution of body, only the last change will count in the next iteration. See
fl-pulsed for details about this kind of situation.

Example

(whenever ((fl-eq (status *task*) :suspended))
(format t “Task ~S was suspended.”);’’ *taskx*))

22

[Function] fl-funcall function &rest arguments

Return a fluent of class fluent-net. The value of the returned fluent is the
result of invoking function on arguments in the following way:

e if an argument in arguments is a non-fluent value, it is used as is.
e if an argument is a fluent object, that fluent’s value will be used.

In particular, each time a fluent in arguments changes its value, the value of the
returned fluent is recalculated (again by invoking function as above).

If no argument in arguments is a fluent object, £1-funcall will behave like
funcall.

Example Another way to view f1-funcall is that it lifts functions operating
on normal Lisp values into the world of fluents. So

(defparameter *fluent* (make-fluent :value 0))
(f1-funcall #’+ xfluent* 42)

will return a fluent whose current value is 42, and which is incremented by 42
each time *fluent* is updated.

[Function] fl-apply function &rest args

Return a fluent of class fluent-net. The value of the returned fluent is the
result of applying function on arguments. See also f1-funcall.

Example Here we construct a fluent which will only become true if all the
current task’s children succeed.

(fl-apply #’every (curry #’eq :succeeded)
(mapcar #’status (child-tasks *current-taskx*)))

23

[Function] fl-pulsed fluent &key (handle-missed-pulses :once)

Return a fluent of class pulse-fluent whose value becomes true “every” time
fluent is pulsed. What “every” actually means is tricky in lieu of missed pulses,
and thus the behaviour is customizable via handle-missed-pulses which can be
either :never, :once, or :always.

Missed pulses mean pulses that occur while the current task is processing an
older pulse. For instance:

(loop (wait-for *fluent*) (frob))

If *fluent* is changed more than twice during the excution of (frob), only
the last change will be what matters to the wait-for in the next iteration. The
in-between changes will be lost. For changes, it usually does not matter as the
current value is what counts. However, there are situations where the number
of pulses (or changes) may be given meaning — and it would be rather bad if
in-between pulses were lost.

One can think of the following three way to handle in-between pulses: either
ignore them, do not ignore them but handle a bunch of in-between pulses as
one big pulse, or handle each of the in-between pulses.

And, in fact, fl-pulsed can be used for each of these scenarios. Its behaviour
depends on the value of handle-missed-pulses as follows:

.never
Initial value of the resulting fluent is nil. Its value becomes t if fluent
is pulsed, no matter how many times. A call to value on the resulting
fluent will make it nil again.

:once
Initial value is nil if fluent has not been pulsed since the last invocation
of value, and t if it has been pulsed. Like :never, its value becomes t if
fluent is pulsed, no matter how many times, and it becomes nil again on
call to value.

ralways
All pulses will be handled. Invoking value on the resulting fluent will
return true as many times as there has been pulses on fluent.

Caveat Note that to implement the stated behaviour, a pulse-fluent must
track the number of pulses that fluent received, and how many times value was
invoked on the pulse-fluent. Consequently, a pulse-fluent is inherently not
reentrant, and it should hence be used within the extent of one task only.

24

[Function| fl-value-changed fluent &key test key

Return a fluent of class fluent-net that is pulsed whenever fluent changes its
value. The change is determined by invoking test (defaulting to eql) to the
current and the old value.

Example It is important to recall the semantics of wait-for which is specified
to wait until a fluent’s value becomes non-nil — not necessary until it’s changed:

(loop (wait-for *fluent*) (frob))

will execute (frob) as long as the value of *fluent* is not nil even if the value
stays the same. To the contrary,

(loop (wait-for (fl-value-changed *fluentx*))
(frob))

will invoke (frob) only each time *fluent* changes its value as per eql.

[Functions| fl-and, fl-or, fl-not

Like and, or and not but working on fluents. Notice that every one of these is
defined as a function and can hence be applied to a list of fluents.

[Functions] i<, i>, i= i+, fl- fi* 1/, fl-eq, fl-eql, fl-member

Wrapper functions. These can be thought of as being defined using f1-funcall
and their respective Common Lisp counterpart.

Displayed are the names in the cram-language-implementation (cpl-impl)
package. In the cram-language (cpl) package, their Common Lisp counterparts
are actually shadowed, and these functions are used instead.

3.1.3 CprL Control Structures

[CpL Operator| toplevel &body body

Create a new toplevel-task, execute body in it and waits until it has finished
as per join-task.
All CpL operators can only be used within the dynamic scope of top-level.

[CpL Operator| seq &body forms

Execute each form in forms sequentially.
Succeed if all succeed.
Fail as soon as one fails.

25

[CPL Operator| par &body forms

Execute each form in forms in parallel.
Succeed if all succeed.
Fail as soon as one fails.

[CPL Operator| pursue &body forms

Execute each form in forms in parallel.
Succeed as soon as one succeeds.
Fail as soon as one fails.

[CpL Operator| try-all &body forms

Execute each form in forms in parallel.
Succeed as soon as one succeeds.
Fail only if all fail.

[CPL Operator| try-in-order &body forms

Execute each form in forms sequentially.
Succeed as soon as one succeeds.
Fail only if all fail.

[CPL Operator| with-tags &body body

While executing body, all lexically occuring (:tag name . forms) will be pro-
cessed as follows:

e cach (:tag ...) form will be replaced by a task named name which executes
forms.

e each such task object will be bound to a lexical variable named name
within body.

with-tags can hence be used to give names to arbitrary forms in body, associate
tasks to these forms, and provide access to these tasks.

26

[CPL Operator| partial-order steps &body orderings

Execute steps in an implicit par form. orderings constrain the order these
implicitly created tasks will be run under:

(with-tags
(partial-order ((:tag A ...)
(:tag B ...)
(:tag C ...))
(:order C B)

(:order B A)))

In this case, we specify that B is constrained by C (i.e. has to wait until C
finished), and A is constrainted by B. It follows that the tasks will actually be
executed in the order C, B, A.

[CPL Operator] with-task-suspended (task &key reason) &body body

Suspend task, execute body, and wake task up again.

Usage Example

We will now give a contrived example that purports to help on conceptual-
izing the semantics of the control structures. It is contrived for two reasons: a)
it is incomplete, almost pseudo-code, and the devil is always in the details; b)
it consists of the CPL control structures, only, and does not make good use of
higher-level concepts such as goals, designators, or process-modules.

(with-tags
(pursue
(:tag nav (navigate x y))
(whenever ((f1> (sensor-fluent :front) *thresholdx))
(with-task-suspended (nav :reason "Object located")
(circumvent-obstacle (analyze-obstacle))))))

Two tasks are started concurrently: the first one directs the robot to go to some
coordinates. And while the robot is walking towards that location, the second
one will watch out for obstacles. It determines that something is in the robot’s
way by querying one of it’s sensor. If the sensor values peak, we must have de-
tected something. In that case we suspend the navigation task so not to run into
the obstacle. It then tries to find out what kind of object it is that’s in the way,
and instructs the robot to circumvent it. After we successfully circumvented
the object, the nagivation task will be woken up to continue to bring us to the
robot’s target. (We assume the robot has a world map so the (z,y) coordinates
were absolute.) Once we arrived at the target location, the navigation task will
succeed, and hence the pursue will succeed, too.

27

The sub plan analyze-obstacle could be defined to look something like the
following:

(try-all
(find-object-using :laser)
(find-object-using :camera))

Which will, again, start two tasks in parallel: one which tries to determine
the object via the laser, and the other via the camera. Notice that we’re only
interested in one result (namely the first) and do not give priority to any method.

And the sub plan circumvent-obstacle could include something like:

(try-in-order
(bypass designator :right)
(bypass designator :left))

It’s similiar to above, but we first try to bypass the obstacle from the right side,
then from the left side — parallel execution would not make sense here.

3.2 Usage & Debugging Aids
3.2.1 Test Infrastructure

Overview

An essential part of the Lisp experience is the interactive writing, testing
and incremental refining of one’s programs. Naturally, the same applies to
CPL. However, especially during the revision of the task implementation, a
proper teardown of all the tasks involved in a CPL expression could not be
guaranteed. Rather quickly, it became tedious to kill remaining “ghost” tasks
manually. That’s why the existing test infrastructure was significantly improved
early on. So, for example, the infrastructure was modified to check, after a test
has executed, whether all tasks spawned during the execution of the test are
dead or still alive; in the latter case, they will be killed and what would have
been a success previously, is turned into a test failure. Test definitions are
supposed to ensure that they shutdown all the tasks they spawn.
Still now — where proper teardown should be assured — running one’s program
wrapped into a test case has a couple of advantages:!'?

e hangs, or deadlocks, are prevented by a timeout associated with a test.

e unhandled errors are caught, their backtraces are saved, and then the
errors are turned into plan failures. The debugger is not automatically
entered by default: multiple threads may easily lead to multiple entrances

12G0me of these features should probably be decoupled from the test infrastructure and
be provided to the user so he can make use of them without having to actually write tests
(which may be regarded as unwiedly due to requirements on naming, and documentation.)
For instance, in a macro called interactive-top-level.

28

into the debugger, often separated by a small delay — annoying if the
development environment hijacks focus on entering the debugger. Instead,
backtraces can be displayed as part of the test failure reports.

e the cram-language-tests (cpl-tests) package contains a number of
utility functions and macros to significantly ease up the establishing of
complex task-related state, and to check properties of such state.

e tests can automatically be run multiple times in a row, coupled with a
QuickCheck like facility to generate random data.

Implementation notes
The test infrastructure is currently built on top of 5am'?, although that
choice may be reconsidered in future.

Synopsis'*

13nttp://common-1lisp.net/project/bese/FiveAM. html
14 All symbols mentioned are accessible in the cram-language-tests (cpl-tests) package.

29

[Macro| define-cram-test name docstring (option*) &body body

Define a new test named by name. For the time being, a test can be executed

via (run!

Yname).

During the execution of body,

e a timeout is associated with the execution such that hangs and deadlocks
will be caught and turned into test failures;

e all tasks spawned will be hold onto such that on test failure or on timeouts,
the threads executing these tasks will be killed;

e unhandled errors and unhandled plan failures in any of the tasks executed
will be handled as follows:

A log entry will be emitted, tagged :debugger. (See section 3.2.2)

The backtrace will be remembered. However, backtraces will only be
displayed if *include-backtracex is true. As backtraces tend to be long,
they would make test failure reporting unnecessarily wordy in the common
case of a simple test failure due to a test form evaluating to nil.

If it’s a condition of type plan-failure, the failure will be propagated
upwards, and child tasks will be evaporated.

If it’s a condition of type error, it will be turned into a plan failure.
Usually, like above, that failure will propagate upwards until it reaches
the caller of top-level, that is the thread executing the test as such, and
hence cause a test failure.

One can force entrance into the debugger by using *break-on-signals#
appropriately. Notice that the timeout will still be valid — so to prevent
sudden exit out of the debugger, one should probably specify a timeout of
nil using the :timeout clause described below.

In case of test failure, the test report will contain: a message explaining the fail-
ure condition, possibly existing backtraces if *include-backtracex is true, and
some statistics regarding how many tasks were spawned in total, how many ter-
minated by themselves, how many aborted (either due to error or plan failure),
and how many had to be killed after test execution.

30

Each option has the following syntax:

option = (:N-RUNS n)
| (:TIMEOUT timeout)
| (:GENERATORS binding+)
| (:SKIP reason)

binding ::= (var value [guard])

(:n-runs n)
specifies that the test should be executed n times in a row.

(:timeout timeout)
specifies a timeout in seconds per single run. If body does not terminate
until timeout has expired, a test failure will be generated. (timeout may
be nil which denotes no timeout.)

(:generators bindingx*)
Each wvalue in the bindings is evaluated, and must return a generator (e.g.
gen-integer, gen-float, gen-1list) which is used to generate random
data in each test run. A binding is established between each var and the
random value generated. guard is a form (executed while bindings of each
var is active) which must evaluate to true otherwise new random values
are tried.

(:skip reason)
specifies that the test should be skipped, printing reason in the test report.

Notice that a documentation string must be provided. This choice was made
deliberately as it can be difficult to quickly infer from a test case what precisely
it is supposed to test from a high-level point of view.

31

[Macro] with-task-hierarchy hierarchy definitions &body body

with-task-hierarchy helps to conveniently and concisely generate a whole tree
of interdependent tasks. hierarchy describes the structure of the tree to be
generated, and definitions specify what forms each task is supposed to execute.

In principle, tests could also use CPL directly, however with-task-hierarchy
has two advantages: on one hand, it makes the hierarchy very explicit and hence
easily visualizable, and on the other hand, it was added to decouple the testing
of the task implementation from the plan language.

hierarchy and definitions have the following syntax:

hierarchy ::= (clause+)

clause = (name -> sub-task*)
definitions ::= (definition+)

definition ::= (:task mname . task-body)

| (:tasks name n . task-body)

During execution of body, each name is bound to a task object (or a list of task
objects in case of :tasks) which execute their respective task-body and whose
children are the specified sub-tasks. The specified hierarchy must not be cyclic,
but may contain multiple roots. The parameter n is interpreted multiplicatively
to the number of parent tasks. For example, in

(with-task-hierarchy ((As -> Bs)
(Bs ->)
((:tasks As 10 ..body-A..)
(:tasks Bs 5 ..body-B..))
)

a binding for Bs will be established which contains a list of 50 tasks executing
body-B.

[Function| wait-until predicate &rest tasks

predicate is called on each one out of tasks and should return a fluent;
wait-until waits until all the fluents have true values.

Each task in tasks can actually be a list of task objects which are regarded as
if they were passed directly.

[Function] become &rest states

Predicate suitable for wait-until: (wait-until (become sy...s;) t1...t;)
waits until the status of all tasks ¢1...¢; is one of s;...s;.

32

[Function] no-longer &rest states

Opposite of become: (wait-until (no-longer si...s;) t;...t;) waits until
the status of all tasks ¢1...¢; is not one of s;1...s;.

[Function] has-status task &rest states

Check whether task currently has a status among states. If not, a test failure is
provoked.

[Function] have-status tasks &rest states

Like above but tasks is a list of task objects.

[Functions] suspend / wake-up / evaporate &rest tasks

Suspends, wakes up, evaporates each task in tasks. Each task in tasks can
actually be a list of task objects which are then regarded as if they were directly
passed.

Example

(define-cram-test basics.1
"Grant-childs awake before childs awake before parent."
((:timeout 5.0)
(:n-runs 10)
(:generators (i (gen-integer :min 1 :max 20))
(j (gen-integer :min 1 :max 5))))
(with-task-hierarchy ((A -> Bs)
(Bs -> Cs)
Cs >)
((:task A (sleep 0.5))
(:tasks Bs 1 (sleep 0.1))
(:tasks Cs j (sleep 0.01)))
(wait-until (become +dead+) A Bs Cs)
(has-status A :succeeded)
(have-status Bs :succeeded)
(have-status Cs :succeeded)))

The generators will in each run bind ¢ to an integer in the range [1..20], and j
to an integer in range [1..5]. These values are then used to initialize the number
of children and grand children in the created task hierarchy, see fig.5. The tasks
are defined such that, first, the grand children will terminate (shortest sleep
interval), then the children, then the parent. This is how it’s supposed to be
— sub tasks must be completed before their parent task can be accomplished —
and hence we check that all tasks will actually have succeeded.

Considering the conciseness of the example, we are of the opinion that in an

33

{ | | \

N, AN, SN,

Figure 5: Visualization of the task hierarchy.

expressive language like Common Lisp, writing tests can actually be fun rather
than tiring and tedious. The example illustrates how it allows to concentrate
solely on what one wants to test rather than on what one would have to do to
reach a point where one could possibly test what one had in mind to test. In
Common Lisp, one can achieve such domain specific languages in reasonably
short amount of code and time with the tools the language provides — a big plus
as routiniers of the language are familiar with the process, and tend to extend
the language in ways that reflects culture, so fellow programmers are able to
take up extensions quickly and with less cognitive overhead than, say, some kind
of external framework might incur.

Future work

The utilities wait-until, become, no-longer are convenient and address
a need which comes up regularly, especially within the implementation of the
CPL macros themselves. It’s just sugar on top of fluent nets and wait-for —
which are used in the implementation of the macros at the moment — still, it
may make sense to incorporate those utilitiy functions into CPL proper.

34

3.2.2 Logging Facility

Overview

CrAM includes an advanced logging facility which is used in all crucial points
of its implementation. It was written along early attempts at the new task
implementation, and quickly proved itself to be an invaluable investment of
time for it made internal behaviour traceable and by that comprehensible.
The logging facility has the noteable property of not being based on log levels,
but on tags. When writing a log expression, one can associate that expression
to one or more log tags. Only those log expressions will emit output at run time
whose specified tags are included in the set of tags active at run time. Naturally,
it’s the user who can decide what tags belong to this “active tag set”. Thus, by
allowing activation and deactivation of tags at will, the logging facility allows
the user to customize the desired degree of logging output in a very fine-grained
way, adapted to the problem the user is trying to debug.
While tags allow a high degree of customization, it would soon become tedious
having to activate tags anew each (non-consecutive) time one intends to use
the logging facility. Hence log levels are provided, too, but they are merely
predefined sets of tags. In practise, it’s actually the ability to disable tags to
arbitrarily inhibit superfluous output on high log levels that turned out to be
most useful.

Implementation Notes

The active tag set is actually implemented as a bitmask, and each symbolic
tag is resolved at compile-time to its corresponding bit in the mask. The run
time test, whether a particular log expression is supposed to emit output, can
thus be compiled down to a few machine instructions, and is hence very fast.

Synopsis'®
[Macro| log-msg clause+

Each clause has the following syntax:

= (:CONTEXT c-fmt-ctrl . c-fmt-args)
| (:DISPLAY d-fmt-ctrl . d-fmt-args)
| (:TAGS tag+)

clause ::

log-msg emits a log entry to *log-outputx* if the active tag set contains one
of the tags specified. A log entry will consist of five columns: timestamp,eai,
timestamp,.,, current task, context, and display.

timestampyca)
denotes a wall clock timestamp in seconds relative to the start of the root
of the task hierarchy the currently executing task was spawned within.

15All symbols listed are exported from the cram-language-implementation (cpl-impl)
package.

35

timestampyun
denotes a timestamp measuring cpu time.

current task

denotes the (possibly abbreviated) name of the currently executing task.

context

denotes the result of applying the format control-string c-fmt-citrl to the

format arguments c-fmt-args.

display
ditto but applying d-fmt-ctrl to d-fmt-args.

[Function] log-use tags

Sets the active tag set exactly to tags.

[Function] log-enable tags
Adds each tag in tags to the active tag set.

[Function| log-disable tags

Removes each tag in tags from the active tag set.

[Function| list-active-log-tags

Returns the active tag set.

[Variables| 4+log-default+4, 4+log-verbose+, +log-very-verbose+

Predefined sets of tags to represent different log levels.

Example

We will demonstrate the logging facility on the following simple example,
and explain how its output can be used to reinforce our understanding of the
interplay of the language constructs described in section 3.1.

(top-level
(pursue (seq (sleep 0.1) :foo)
(wait-for (end-of-time))
(par (wait-for (end-of-time))
(wait-for (end-of-time)))))

The function end-of-time is part of the cram-language-tests package, and
simply returns a fluent which will never become true. Knowing that, coupled
with the understanding derived from reading section 3.1, we expect the following
to happen:

36

1. The task executing the form (seq (sleep 0.1) :foo) will finish first —
it will succeed, and return the value :foo.

2. pursue will receive that value, return it again, thus propagating it further
upwards until it’s finally returned from the expression as a whole.

3. Before returning, pursue will evaporate the remaining tasks executing the
(wait-for (end-of-time)) expressions.

After setting the active tag set to +log-default+, running the example above

results in the following output shown'®:
real | run | task name context display
0.173 | 0.144 | [PURSUE-C..-#1/3]-15 | FINISH :SUCCEEDED, :FOO
0.178 | 0.144 | [PURSUE]-18 SENT — [PURSUE-C..-#3/3]-17 | #<EVENT :EVAPORATE>
0.178 | 0.144 | [PURSUE]-18 SENT — [PURSUE-C..-#2/3]-16 | #<EVENT :EVAPORATE>
0.178 | 0.144 | [PURSUE]-18 SENT — [PURSUE-C..-#1/3]-15 | #<EVENT :EVAPORATE>
0.178 | 0.144 | [PURSUE]-18 FINISH :SUCCEEDED, :FOO
0.179 | 0.144 | [PURSUE-C.-#2/3]-16 | RECV « [PURSUE]-18 #<EVENT :EVAPORATE>
0.179 | 0.144 | [PURSUE-C.-#2/3]-16 | FINISH :EVAPORATED, ...
0.180 | 0.144 | [TOP-LEVEL]-1616 SENT — [PURSUE]-18 #<EVENT :EVAPORATE>
0.180 | 0.144 | [TOP-LEVEL]-1616 FINISH SUCCEEDED, :FOO
0.190 | 0.148 | [PURSUE-C.-#3/3]-17 | RECV « [PURSUE]-18 #<EVENT :EVAPORATE>
0.190 | 0.148 | [PURSUE-C.-#3/3]-17 | SENT — [PAR|-27 #<EVENT :EVAPORATE>
0.190 | 0.148 | [PURSUE-C.-#3/3]-17 | FINISH :EVAPORATED, ...
0.197 | 0.144 | [PAR]-27 RECV ¢« [PURSUE-C..-#3/3]-17 | #<EVENT :EVAPORATE>
0.197 | 0.144 | [PAR]-27 SENT — [PAR-CHILD-#2/2]-26 | #<EVENT :EVAPORATE>
0.197 | 0.144 | [PAR]-27 SENT — [PAR-CHILD-#1/2]-25 | #<BEVENT :EVAPORATE>
0.197 | 0.144 | [PAR]-27 FINISH :EVAPORATED, ...
0.198 | 0.152 | [PAR-CHILD-#2/2]-26 | RECV « [PAR]-27 #<EVENT :EVAPORATE>
0.198 | 0.152 | [PAR-CHILD-#2/2]-26 | FINISH :EVAPORATED, ...
0.198 | 0.152 | [PAR-CHILD-#1/2]-25 | RECV « [PAR]-27 #<EVENT :EVAPORATE>
0.198 | 0.152 | [PAR-CHILD-#1/2]-25 | FINISH :EVAPORATED, ...

As mentioned in the description of log-msg, the first two columns represent
cumulative timestamps relative to the start time of top-level. Names of tasks
are abbreviated in their middle since doing it there is unlikely to accidently elide
chunks necessary for identification. Truncating at the end would be especially
bad as task names of sub forms of CRAM constructs contain a suffix -#i/n
denoting the ith of nth total sub forms. So for example, [PURSUE-C..-#1/3]-15
denotes the task executing the first sub form of a pursue, i.e. (seq (sleep
0.1) :foo) in our case. The exact meaning of the “context”, and “display”
fields depend on the context in which the log-msg form was used;!” as a rule

16Some verbosity was elided to make it fit on a page. Also, the actual output is in ASCII.

7For a newcomer to the source base, it’s probably a good idea to test the logging facility
on simple examples like the one in this section with a very high log level enabled, and then
proceed grepping through the source base for the context fields. Juxtaposition of source code
and log output should help in gaining understanding of the internals involved.

37

of thumb, the “context” field often contains the name of an internal function
(possibly enriched with additional values), and the “display” field contains pa-
rameters passed to that function.

So what does the log show us?

0.173 The task [PURSUE-C..-#1/3]-15, executing the 1st sub form of pursue,
succeeds and returns the value :foo.

0.178 Its parent, [PURSUE]-18, has noticed a child’s success, evaporates
all its children, and then succeeds with the return value yielded
from the succeeded child. The propagation of return values is per-
formed by join-task, whose operation is not part of the log level
+log-default+. Notice that [PURSUE]-18 actually evaporates all its
children, including the one who already finished — however, as that
task is dead already, it won’t be able to react on events anymore, so
the superfluous event will just be ignored.

0.179 The task [PURSUE-C..-#2/3]-16, executing the 2nd sub form of pursue,
evaporates. As the task does not have any children, it does not
propagate the evaporation event any further.

0.180 The task [TOP-LEVEL]-1616, executing the top-level form, succeeds,
and return the value :foo stemming from the pursue sub form, to
its caller, the REPL. (And again, as fixed part of a task teardown’s
process, the task tries to evaporates its child, which, again, is dead
at that point already.)

0.190..8 The task executing the 3rd sub form of the pursue form evaporates,
propagates the evaporation event to the task executing the par form
which again propagates the event to the tasks executing the par sub
forms until all tasks spawned will finally have terminated.

A few things remain to be mentioned. First, the increase and then decrease
of run time in 0.190 to 0.197 is a puzzling phenemenon that currently defeats
our ability of explanation.'® Second, from looking at the log, it’s obvious how
gratuitous the CRAM constructs spawn new tasks, and by that threads. Third,
the log shows that parent threads do not wait until their children have performed
desired state transitions induced by the parent.'® Last, running the example
with the log level +1log-very-verbose+ would have resulted in a table with over
100 entries.

18The second column is based on get-internal-run-time which, on SBCL, is implemented
by calling getrusage(2) with RUSAGE_SELF as argument, denoting per-process timings. Fur-
thermore, the example was actually executed on a uniprocessor machine.

19 Actually, the implementation supports a mode in which parents do wait until their children
have transitioned properly. If future proves that the waiting won’t impair performance, it’ll
probably be a good idea to wait by default so invariants are ensured.

38

Future work

The second field of the log output, indicating CPU time, was added with
the intention to fathom involuntary context switches caused by the operating
system. The field’s value is computed using get-internal-run-time which
returns the sum of user and system time used by the current process. However,
it does not include the time the process voluntarily waited (on I/O, synchro-
nization), so comparing the wall clock time to the cpu time timestamp does not
yield much information. We experimented using the ru_nvcsw, and ru_nivcsw
slot values of the result returned by getrusage not to much avail (but then we
may just have not been able to develop a good model of understanding of the
details involved in the short time.) There may be venues of improvement.

At the moment, the logging output is emitted to *log-output* which defaults
to *standard-output*. ROS, the robot middleware being used in combination
with CrAM, has a special interface for logging and debugging output to central-
ize the collection of such data. It may make sense to plug the logging output of
log-msg into that interface.

4 Conclusion

In the first part of this bachelor thesis, we discussed design considerations and
implementation issues of the CRAM Plan Language: we glanced at fluents and
shortly depicted how they’re an ingredient part of our plan language as they
conveniently allow tracking of changes inside and outside of the system. We
continued to discuss tasks, how they are organized in hierarchies, and how their
hierarchical organization leads to particular kinds of inter-task communication.
We then argued that the robustness of inter-task communication plays the cru-
cial role in the robustness of the task implementation as a whole. Following,
we argued that asynchronous interrupts for intrinsic reasons can’t result in ro-
bust code because their handling would require knowledge over all the software
involved. We proposed to base the task implementation on a synchroneous
mechanism instead, and suggested SBCL’s deadline to provide the necessary
machinery. There upon, we described the new task implementation based on
an event loop which is periodically entered and which acts on messages stem-
ming from other tasks. However, we eventually came to the conclusion that
using SBCL’s deadlines would still require us to have knowledge about all places
where synchronization may be used internallly, and are hence impractical as
well. We outlined an approach where we essentially implement our own dead-
lines so only our code will be affected, and code localization is retained.

In the second part we provided extensive documentation of CRAM’S current
API, and described other tools which may come handy to a user, like the test
suite and the task-related logging facility.

39

References

[1]

2]

3]

4]

[5]

[6]

7]

18]

9]

[10]

“Why Are Thread.stop, Thread.suspend, Thread.resume and
Runtime.runFinalizersOnExit Deprecated?,” http://java.sun.com/
j2se/1.4.2/docs/guide/misc/threadPrimitiveDeprecation.html,
retrieved 2010-05-04.

McDermott, D. "A Reactive Plan Language," Yale University, Research
Report YALEU/DCS/RR-864, 1991.

McDermott, D. “Revised NISP Manual,” Yale Computer Science Depart-
ment Report 642, 1988.

Moésenlechner, L. and Demmel, N. and Beetz, M. “Becoming Action-aware
through Reasoning about Logged Plan Execution Traces”, IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 2010, submitted.

Newman, W. H. et al. “SBCL User Manual” http://www.sbcl.org/
manual/, retrieved 2010-05-04.

Pitman, K. M. “Condition handling in the Lisp language family”, Advances
in exception handling techniques, Springer Verlag, 2001, pp. 39-59.

Pitman, K.M. “9.1 Condition System Concepts”, Common Lisp Hy-
perspec. (http://www.lispworks.com/documentation/HyperSpec/Body/
09_a.htm), retrieved 2010-05-04.

Quigley, M. and Conley, K. and Gerkey, B. and Faust, J. and Foote, T. and
Leibs, J. and Wheeler, R. and Ng, A. “ROS: an open-source Robot Operat-
ing System,” IEEE International Conference on Robotics and Automation,
ICRA 2009

Siivola, N., "Threads, Interrupts, Transactions”’, http://random-state.
net/log/3386927147 .html, retrieved 2010-05-04.

Tenorth, M. and Beetz, M. "KnowRob — Knowledge Processing for Au-
tonomous Personal Robots," IEEE/RSJ International Conference on In-
telligent Robots and Systems, 2009.

40

