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Abstract
Learning object placements for different tasks is essential for robots acting in human
households, to perform their actions robustly and flexibly in different simulated and
real-world environments. Since the placement of objects depends highly on the en-
vironment and the human user using the kitchen, the robot can execute actions by
imitating the different humans in the particular environment. For this the robot ob-
serves the human storing and placing objects in different scenarios. Virtual Reality
allows with complex simulations to create realistic environments for humans executing
tasks. A human could set e. g. a table for breakfast in the virtual environment and
collect at the same time data which can be interpreted by robots. The robot can use
the different object positions and orientations during the breakfast setting, to learn
models representing different object placements and relations. By using the learned
data the robot can efficiently execute high level manipulation actions and thus setting
a table for breakfast.
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Zusammenfassung
Das Erlernen von Objektpositionierungen aus unterschiedlichen Aufgaben is essentiel
für Küchenroboter, um flexibel und realistisch in unterschiedlichen Umgebungen zu ar-
beiten. Da die Objektplatzierungen abhängig sind von der Küche und den Menschen die
sie nutzen, führt der Roboter Aktionen so aus wie es die unterschiedlichen Menschen in
der gegebenen Küche gemacht haben. Dafür beoachtet der Roboter den Menschen wie
er oder sie die Objekte verstaut oder in unterschiedlichen Szenarien platziert. Virtual
Reality erlaubt mit komplexen Simulationen realisitische Umgebungen für Menschen
zu kreieren, in denen unterschiedliche Aktionen wie in der echten Küche ausgeführt
werden können. Z. B. könnte ein Mensch in der virtuellen Umgebung ein Tisch für
das Frühstück vorbereiten und würde gleichzeitig dabei Daten aufnehmen, die vom
Roboter interpretiert werden können. Der Roboter kann die unterschiedlichen Objekt-
positionierungen während des Tischdeckens nutzen, um ein Modell zu erlernen, welches
die unterschiedlichen Objektplatzierungen repräsentiert. Mit den gelernten Daten kann
der Roboter dann effizient komplexe Manipulationsaufgaben ausführen und somit einen
Tisch für das Frühstück decken.
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1 Introduction

1.1 Motivation

Developments in robot hardware started in the recent years to get more efficient, robust
and usable to build systems which can be operated and work in the real world. The
flexibility in the design of state of the art robots led to robots with great natural
locomotion and to robots with fast and precise execution of tasks, which are efficiently
used in factories. But still these need to be directed and often do not represent their
environment and therefore are used as tools. If the robot needs to work with the
environment around it or with other humans, the needed information for executing
a task increases greatly. Giving a human and robot the same task shows how much
implicit knowledge is hidden behind a simple task. In this bachelor thesis, the given
domain is not a factory, but a kitchen. A kitchen robot can be deployed to assist the
human in the kitchen by cooking or setting up the table for him or her. The tasks in a
kitchen are highly complex since knowledge must be utilized for cooking meals or even
cleaning dishes. Let us assume, that e. g. the kitchen robot should setup a table for
breakfast. While the human starts with the task, the robot may already fail because it
does not know how to grasp or place objects reasonably. Even if particular objects are
handed to the robot and it is acceptable to just drop these instead of placing carefully,
questions like “Where are the wanted objects stored? “, “On which surface should these
be placed?“ or “Where exactly should the robot place the cups or plates on the given
surface?“ rise. What for the robot is needed knowledge, is for the human commonsense.
Thus, we either save static information about the environment on the robot specifying
e. g. placements of spoons and plates or we try to learn these placements. Since the
former method results in little flexibility, the latter should be realized for real-world
table settings in an arbitrary user’s home.
To learn a specific task like a table setting, a model is required which is able to return

the missing information. Its definition must be understandable for the robot and the
structure must allow adjustments. With adjusting the model the robot may be able to
learn from observations or other data, thus needed information gets returned allowing
to solve the problem of the task. Models and algorithms which are able to learn from
specific data are available from the research field of Artificial Intelligence (AI). Tasks
like the estimation of the robot position, state and the perceiving of its environment can
be solved in robotics with various AI models and methods. These learn and acknowledge
different types of information, allowing the execution of a specific tasks after using the
learned model. How the task is specified depends on the domain the robot is working
in. The built model in this bachelor thesis allows the robot to set tables for breakfast by
placing objects on surfaces like the human did. It imitates the human by learning and
saving where objects were taken from and how they were arranged. Moreover, it will be
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able to allow to represent relations between objects, so the robot can like the human
orientate itself on the already placed objects. Thus, if a number of objects are already
set on the table, the robot will be able to find positions for other objects, relative to
the already placed ones.
But how exactly does the robot acquire the commonsense of the human which can

be represented by a defined model? Due to advancements in Virtual Reality (VR),
the opportunity rises to use the humans commonsense and task knowledge encoded
in virtual actions. After the robot watched a human setting up a table in VR, it is
able to tell where the plate should be placed and that e. g. the spoon should be on
the right side of the plate. Moreover, the robot will be able to do that for more than
one human, if the human showed it how. Therefore, the robot will examine the data
collected from the human to complete tasks like setting a table for breakfast. The goal
of this thesis is to make it possible for the robot to ground placements for different
object types by examining the human demonstration. In addition, the robot should
distinguish between the breakfast setups of different humans too.
In the field of robotics, two different approaches are common in capturing the motions

of objects and the manipulation of the environment: either the experiment is recorded
by a video camera or it takes place in VR and is recorded by a computer. Both of these
approaches are sufficient enough to conclude semantic or specific information about
the objects and environment. In this thesis, the VR approach will be used.
The main reason is, that VR allows much more flexibility and is easier for configuring

the environment. Kitchen environments can be changed easily in a simulation by e. g.
moving furniture or importing different items. Although VR does not perceives the real
world, modern computers allow with complex and realistic simulation environments,
the deployment of a VR setup delivering photo-realistic images. Moreover, VR allows
to record more conveniently everything changing in VR. Videos, on the other hand,
must first recognize, what they are filming and can only recognize what is in the field of
view of the camera. Whereas in VR one has access to the complete world, independent
of the camera position or orientation.
Furthermore, a knowledge-based system called KnowRob allows to access the VR

data with a convenient interface, thus only needed data can be saved and used for
this bachelor thesis. With VR, the data must only be recorded and exported, so that
the knowledge-based system can filter the information in the VR data. Hence, the
knowledge-based system allows to comfortably export filtered data, it can be used
directly to train a model representing the symbolic or concrete placements of different
objects.
The planning framework CRAM [19] makes it together with the learned model pos-

sible to execute a simulation of a robot setting a table for a breakfast scenario using
different objects and their placings.
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1.2 Hypothesis

This bachelor thesis uses a imitation learning approach to learn symbolic and subsym-
bolic object placements for table setups in the given kitchen. Since the placements are
dependent from the human the robot learned from, the built system allows different
humans, table, kitchens and table settings (e. g. lunch, dinner). The robot can there-
fore ask in any state of the kitchen where to place objects and how to orientate them.
The built system answers with available placements since already placed objects on
the table are recognized. This means in particular that the sequence of placing objects
does not matter and that the built system returns relational placements which lead to
more suitable breakfast table settings.
The collected data gets fitted in a chosen machine learning model, which represents

the placements of the different object types on the table. To validate this, the outputs
of the model are visualized and discussed. Moreover, the system was connected via a
ROS interface with the planner framework CRAM to check its suitability and usability
in a simulation environment.

1.3 Scope of this Thesis

The target of this bachelor thesis is not a continuous system, which infers in real-time
new placements of objects or adjusts the behavioral model of the human. Therefore,
the model in the built system will be initialized once and returns then the same learned
placements. It is not possible to add new data from VR experiments dynamically while
the system runs and it does not learn from queries coming from the planning framework
CRAM [19]. This does not mean that the system is not able to recognize redundant
information. If e. g. bowls are already placed on the table, the system recognizes this
and returns placement information accordingly. Moreover, the system prefers relational
placements between objects. So if a spoon should be placed on the table the system
recognizes the already placed bowls and returns placements being in relation to the
placed objects. Therefore, stacking of objects or other redundant errors will be pre-
vented on the planning level and commonsense of the human will be used to execute
the given tasks successfully. Finally, this bachelor thesis will not be applied on the real
PR2 robot, but only on the simulated PR2 robot in the simulation Bullet [5].

1.4 Contribution

The contribution part of this bachelor thesis contains mainly two parts. First, the query
functions heading towards the knowledge-based system KnowRob [2] were expanded.
This was done to export the collected data in the VR experiments in a CSV-file. This
file is used in the built system to represent the kitchen and its objects and to learn
parameters to conclude the placements of used objects.
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The second part contains a ROS [21] interface to communicate between the planning
framework CRAM [19] and the built system, since the planning framework is written
in Common Lisp and the built system in Python. Furthermore, more functions in
CRAM were implemented and used in the reasoning components of CRAM too, so the
learned placements could be used fluently in the planning environment. Finally, and
most importantly, a model was designed and implemented to represent suitable object
placements in relation to other objects, by using Gaussian Mixture Models (GMM).
This thesis presents a fully integrated pipeline, where data can be acquired in VR,

then filtered through KnowRob queries into a CSV-file, after which a machine learning
model is trained, which can then be queried by the robot with the CRAM framework
to give locations where to search for objects and where to place them on the table.

1.5 Structure of this Thesis

Chapter 2: Related Work gives a insight in the state of the art developments for
planning complex tasks and learning of object placements and relations.

Chapter 3: Foundations introduces the used frameworks and explains them each
and shows how they are used together.

Chapter 4: Approach describes the built model by starting with its input param-
eters and its specification. Afterwards, the used model is explained by visualizing it
and discussed theoretically to show its suitability for the desired tasks explained in the
Hypothesis.

Chapter 5: Evaluation shows the built model in practice, validates it and proves
its usability and practical suitability for the desired tasks explained in the Hypothesis.

Chapter 6: Conclusion summarizes this bachelor thesis, discusses the capabilities
of the built model and presents further improvements for the future.
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2 Related Work
Executing complex high-level plans like a table setting for breakfast contain many
parameters. Parameters like the objects most likely location or its position and orien-
tation goal, are filled from humans through their commonsense and experience. Instead
of using humans commonsense robots can be simulated and execute actions in a loop
to specialize for a task in a given environment. In [18] fetching and placing tasks of
objects are specialized by being validated in a simulated closed loop. Therefore, con-
crete values for the above parameters are learned to successfully apply these on the
real robot to fetch and pick up objects. Although this approach does create more stable
pick and place actions, objects may not be arranged sensible enough for table settings.
The general approach of teaching robots trough imitation is popular in robotics ([23],

[7]). To accomplish that two widespread and common technologies exist for acquiring
data from humans: either by filming the human doing the task or by putting the
human in VR where the task should be completed in. In [25] researchers showed after
performing a task under the observation of the robot using a RGB camera, that the
robot could mimic this specific task successfully. This was based on the reconstruction
of the hands and objects trajectories. The matching hand and object poses were defined
as a graph problem and solved by a graph optimization library. In [10] similar was done
but with collected VR data instead. The VR data was transferred in the knowledge
system KnowRob to reason on it. The results constructed trajectories of used objects in
different scenarios. In a pancake making scenario the spatula and pancake trajectories
could be calculated. In [13] the pancake scenario is referred again in the context of
establishing a failure detection model, which was trained from a human in a physics
simulation.
Besides the applications of imitation learning in trajectory following and failure

detection, commonsense is been used in different parameters of action planning too
([12], [16]). In [24] researchers built a generative model, which learned - after fitting
it with videos showing everyday activities - placements of different objects and causal
dependencies between actions. The filmed objects are arranged by representing their
placements through GMMs [9]. The causal dependencies between objects and physical
contexts like “glass on this table“ are learned from a Recurrent Neural Network (RNN)
[6] which can predict future actions too. The results show generated new manipulation
animations from objects, action predictions and motion planning. Other researchers
used different methods to learn object placements or relations between objects and the
manipulator. In [3] Support Vector Machines (SVM) [4] are used instead of GMMs
to cluster data points, which is sufficient enough to represent object placements on a
surface. To represent simple “on“ and “adjacent“ relations between objects Rosman
and Ramamoorthy developed an algorithm in [22] and applied it on different pictures
showing correctly classified relationships.
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Using videos as input results in different challenges having to be solved. First, the
objects must be reliably recognized as well as the actions performed from the human.
Moreover, the modeling of the human activity and character animation are difficult
tasks due to the complexity of human movements [24]. These challenges are more con-
venient to solve by using VR to collect data. In [1] researches constructed a graph
representing related activities in the virtual environment by acquiring VR data and
extract semantic information on which was reasoned on. The result contains actions
related to objects like grasping, reaching, taking, staying idle or simple relations of ob-
jects like “GlassOnSponge“. Because of the on-going research in the field of knowledge-
based reasoning in complex everday activites, sufficient results in from of table settings
arrangements ([12], [15]) were achieved. In [17] an application of imitation learning was
applied by collecting data in VR and using the knowledge-based system KnowRob [2]
to reason on the collected data. Moreover, it gives a great insight in the inner imple-
mentation of fetching and placing actions [16] in CRAM [19]. To successfully fetch an
object it is vastly important for the robot to know where to stand for registering the
object, where to place its end-effector and how to grasp the object (e.g. from the top,
behind). This information is recorded in a VR setup and was saved in a database in-
side of the knowledge-based system KnowRob [2] from where it can be accessed trough
queries written in first-order (FO) logic. After the analysis of the plan code, the needed
motion parameters were summarized and a probabilistic model was build. This model
utilizes a Fuzzy Markov Logic Network, which returns the probability of success for
fetching an object given the input of a robot position, robot arm, object orientation
and on which side the object was laid on. The experiments in table setting context
showed that the initial random pose of objects in the simulation had a big impact for
the success of fetching it. Moreover, the results for the tests on the real robot concluded,
that not much VR data is needed for ensuring successful motion parameterization.
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3 Foundations
In this chapter the software components that have previously existed and have been
applied in this thesis for the querying and transporting of information collected in VR
are described.

3.1 KnowRob

One prerequisite for constructing a system like in this bachelor thesis intended is a
knowledge system, which could reason on the collected VR data. KnowRob [15] is a
knowledge processing system that combines knowledge representation and reasoning.
The knowledge is represented in the Web Ontology Language (OWL). Reasoning is
done by referencing the stored knowledge in Prolog as presented in Subsection 3.4.1.
The knowledge processing system is used in this bachelor thesis to reason on the VR

data and extract crucial information. It contains knowledge about the world in which
the robot moves and how to execute actions with objects in the world to achieve a
wanted goal. Therefore, it can answer questions from the planning level like: when did
the human grasp something? Where was his hand as he started grasping it? Where
was he looking while doing this? Which hand was used and what was grasped? Where
was his hand located and how was the orientation before he grabbed? When did the
grasping start and when did it end? These questions need to be answered to make the
robot execute complex activities like e. g. a table setting. Since knowledge about the
objects and environment are necessary to make a complex task feasible, the planning
framework CRAM and KnowRob need to be connected via an interface.

3.1.1 Interface

The package cram_json_prolog1 is used as an interface to create an question-answer-
system from CRAM towards KnowRob. The ROS json prolog client was implemented in
CRAM to allow the use of json-prolog within Common Lisp. Therefore, prolog queries
can be sent in a JSON format via ROS to KnowRob. The results can then be used in
the following plan execution in CRAM.

3.2 VR

To collect data in VR, one needs a realistic environment. In my case I needed data for
table settings, so the environment is a realistic kitchen. In [11] is described how the
VR simulation was designed to build an as realistic as possible kitchen environment.
The built kitchen in VR is simulated in the Unreal Engine2 allowing naive physics like
dynamic pushing and gravitation forces on objects. Therefore, drawers can be opened

1cram_json_prolog: https://github.com/cram2/cram/tree/boxy/cram_json_prolog
2Unreal Engine: https://www.unrealengine.com/en-US/

https://github.com/cram2/cram/tree/boxy/cram_json_prolog
https://www.unrealengine.com/en-US/
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and closed, objects can be moved by picking or placing, or they can bump at each
other.
All the manipulation activities the human performs in the virtual environment and

the effects of performing in the virtual environment are recorded. This includes the
poses of hand, camera, object and kitchen objects. While the human performs tasks in
VR, positions and orientations of all objects are sent to a database. Together with the
time-synchronized events, a hierarchical symbolic-subsymbolic activity representation
gets created. The symbolic part is defined in FO logic with rules like shown in Listing
1.

1 ep_inst ( EpInst ) ,
2 obj_type ( ObjInst , knowrob : ’cup’ ) ,
3 obj_type ( EventInst , knowrob : ’GraspingSomething’ ) ,
4 u_occurs ( EpInst , EventInst , Start , End)

Listing 1: Base information to query VR data in KnowRob with Prolog

Every VR session will be saved as one episode. Episodes are organized in events like
TouchingSomething or GraspingSomething. EpInst is an unbound episode variable in
the call of ep_inst(), so Prolog can choose one episode instance from the collected VR
data pool. Similarly in line two of Listing 1 an object instance ObjInst of given object
type cup and in line three an event instance EventInst of type GraspingSomething
get queried. Finally, Prolog checks in line four if the queried event instance EventInst
is in the episode instance EpInst within the two timestamps Start and End. Since we
got the timestamps for a specific episode and object instance we can get the positions
and orientations for this object instance from Start to End. Therefore, the knowledge
base KnowRob, which saves the symbolic data, is used to query subsymbolic data like
trajectories of objects, kitchen parts or human hands on a symbolic level.
For making the above feasible, the symbolic knowledge base in KnowRob repre-

sents all objects in VR. Moreover, the subsymbolic data is segmented in motions like
“GraspingSomething“ and categorized to actions modeled as a sequence of motions [8].
The package RobCoG3 exports the data in JSON- and OWL-files. These JSON-files

contain different events like grasping and touching of objects, states of links in the
kitchen and opening and closing of kitchen drawers or doors. Every recording session
in VR creates a JSON-file. The OWL-file contains the semantic map of the VR kitchen.

3.3 ROS

The Robot Operating System (ROS) [21] allows for an efficient, productive and fail-
safe work environment with robots. ROS is not an operating system (OS), because it
operates on top of an OS like Linux. ROS software is categorized mainly in two parts.

3RobCoG: https://github.com/robcog-iai/RobCoG

https://github.com/robcog-iai/RobCoG
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The first part called “main“ contains general tools making it possible to compute the
robot system on distributed systems. These systems need to interact with each other to
establish a working robot system. Therefore, they are connected via a communication
interface and need to be built independently from each other with a package and build
tool. The ROS build system is catkin4, which is a CMake extension being able to specify
how to build, test and deploy the developed systems. The “main“ package is developed
by companies and external developers.
The second part of ROS is called “universe“ and is developed by the open ROS

community. It contains various packages like the transform library tf5 or the computer
vision library opencv6 and algorithms like the Inverse Kinematic Calculation from the
Kinematics and Dynamics Library kdl7. These are used to achieve the execution of
autonomous robotic tasks and avoid reinventing the wheel. Moreover, the ROS com-
munity offers hardware drivers, visualization tools like rviz8 and different graphical
user interfaces (GUI) for analyzing data sent via the ROS communication interface.
The ROS communication layer (of ROS version 1) includes in practice the nodes,

which each represent one of the distributed systems, and the roscore. Nodes can be con-
sidered as nodes in a graph. Each node runs processes and consumes and/or produces
data via typed topics. Therefore, data can be published or collected by subscribing to
specific topics of other nodes. With that concept, ROS allows great flexibility allowing
asynchronous many-to-many data streams. But ROS hands an ability to retrieve fil-
tered information too, by providing typed services. Each service depends on the node it
is running on. It offers a synchronous communication channel, which answers incoming
typed data by directly responding with other typed data and, thus, allows for that
reason to question other nodes for specific filtered information. ROS provides differ-
ent command line tools to visualize and access specific information from the running
ROS network. rqtgraph9 visualizes the nodes connected through topics or services.
rosnode10 allows getting information about the running nodes and the advertised top-
ics. rostopic11 delivers information about the topics and adds an interface to interact
with all topics by sending typed data through the command line interface.
All data sent via the ROS communication layer is typed by message (msg) or service

(srv) files. These message or service files can be written from developers by using the
base standard types from ROS. Since ROS supports different programming languages,
these must be translated into classes of the supported programming languages allowing
to utilize them inside the developers’ implementation.

4catkin: http://wiki.ros.org/catkin
5tf: http://wiki.ros.org/tf
6opencv: http://wiki.ros.org/vision_opencv
7kdl: http://wiki.ros.org/kdl
8rviz: http://wiki.ros.org/rviz
9rqtgraph: http://wiki.ros.org/rqt_graph

10rosnode: http://wiki.ros.org/rosnode
11rostopic: http://wiki.ros.org/rostopic

http://wiki.ros.org/catkin
http://wiki.ros.org/tf
http://wiki.ros.org/vision_opencv
http://wiki.ros.org/kdl
http://wiki.ros.org/rviz
http://wiki.ros.org/rqt_graph
http://wiki.ros.org/rosnode
http://wiki.ros.org/rostopic
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The roscore needs to be started to create a ROS communication network. It holds the
ROS master, a parameter server and rosout. The ROS Master is a XML-RPC server
with the primary target to connect different nodes, e. g., through topics. Before a node
starts to advertise a topic, it registers the topic at the ROS master. If one node wants
to publish some data on this topic, it asks the ROS master on which node the topic is
running. The ROS master provides the wanted node and the connection between both
nodes gets initiated. The parameter server holds the configuration files of the nodes
and rosout is a network-based stdout to log time-sensitive information like warnings or
errors processed on different nodes.

3.4 CRAM

The Cognitive Robotic Abstract Machine (CRAM) [19] is a task planning framework
controlling autonomous robots in a real or simulated environment. It allows with its
geometric grounding and fast simulation methods for the construction of high-level
robot control plans. Furthermore, it can reason about the past task executions and
optimize its plans for better performance.
CRAM defines prewritten basic action plans like picking, perceive, navigating and

complex ones like fetching, delivering and transporting. Since CRAM allows to use
different robots, plans for these have to be general and modular. Moreover, in robotics
it is important that tasks are easy embeddable, transparent and at least interruptible.
Due to these general requirements, plans in CRAM are written in the CRAM Plan

Language (CPL). CPL offers fluents and entity descriptions, which allow basic control
structures during runtime. Fluents represent the state of the robot by defining vari-
ables, which can be thread-safe manipulated. But since planning actions does not fit
in classical programming planning, these fluents are not sufficient enough to plan a
specific task. They are just powerful enough to verify with primitive statements if a
specific goal for an action was achieved. The description represents actions and the en-
vironment abstractly in symbols and need to be referenced to infer missing information
about the action or environment. The reactive and dynamic referencing approach with
Prolog allows to plan stereotypical actions enough to execute them in a simulation or
on the real robot. To give a greater insight in CRAM, the different types of descriptions
are explained in Subsection 3.4.2.

3.4.1 Prolog

Prolog is a declarative and logic programming language in which it is possible to
define facts and rules to check if a particular clause is true. A rule in pure Prolog is a
implication from a conjunction of clauses to one clause. The conjunction of clauses is
called body and the single clause is called head. A rule is true, if the body is true too.
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A fact is just a rule without body. An example can be found in the appendix in Figure
25.
CRAM has its own primitive Prolog interpreter written in Common Lisp12 allowing to

use Common Lisp designator objects (see Subsection 3.4.2) and other data structures
in Prolog variables. In CRAM it is possible to define facts and rules inside of fact-
groups. Therefore, designators can be resolved by e. g. validating it in the body of a
specified rule with prolog rules and facts. If assignments to the prolog variables exist,
such that all elements of the body are true, the head of the rule gets evaluated with
the assignments of the variables. Furthermore, Prolog can answer queries by returning
concrete values for given parameters. If some assignments for a rule or fact in the
body fails or returns NIL, Prolog tries with another assignment. If one rule or fact
in the body cannot be true, the designator resolving fails too meaning that the head
will not be executed. Finally, in CRAM the Prolog interface returns a lazy list. This
allows together with the defined referencing rules in the fact groups dynamic inferring
of designators and an opportunity for a reactive implementation of CRAM plans. An
example can be found in the appendix in Figure 26.

3.4.2 Designators

In CRAM the symbolic entity description is an attribute of a Common Lisp designator
class. The syntactic definition of the description is a key-value-pair list. Each designator
must be resolved. They are resolved by validating the values in the description and
inferring the missing keys and values by using Prolog rules. Therefore, the resolved
designator changes and the description gets extended with more information included.
Resolved designators have a solution bound to them and are called effective designators.
The saving of the designator changes allows reasoning about the past. This is done
by equating the unresolved and effective designator object. This means that a new
designator object will be created for the effective designator with an updated timestep
and description. Moreover, the parent slot of the resolved designator object points at
the unresolved designator object. The unresolved designator object gets therefore an
updated successor entry, saving the pointer towards the effective designator object.

3.4.2.1 Object Designator

Object designators describe objects like e. g. a cup by specifying its type, color or name.
Furthermore, they can describe kitchen furniture like drawers or different surfaces.

Referencing The typical use of object designators is the detection of objects by
a perception system. The resolution of object designators requires therefore, that the
robot is already in a position in which it is able to detect the object with its perception

12cram_prolog: https://github.com/cram2/cram/tree/master/cram_core/cram_prolog

https://github.com/cram2/cram/tree/master/cram_core/cram_prolog
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system. If the perception system is a camera in the head of robot, at least the rotation
of the head must be set to be able to detect the object.

3.4.2.2 Motion Designator

Motion designators are responsible for the low-level motions the robot should complete.
These motions are then forwarded to the hardware-dependent process-modules.

Referencing Motion designators are atomic motions including movements for the
robots base, torso or arm(s), and commands for the end effector or perception system
for detecting objects. Each of these motions are defined in a group or alone to specific
process module handling the specified motions in the real world or simulation. Since
motion designators are very basic, the referencing needs more concrete information
meaning to define and execute motion designators manually more explicit knowledge
must be filled into the description of the designator.

3.4.2.3 Location Designator

Location designators describe locations of objects, the robot or parts of the environ-
ment and can return distributions representing e. g. from which positions objects are
reachable or visible.

Referencing Location designators are not referenced in Prolog, but through a
sampling-based approach with location-generator and location-validation functions.
The referenced location designators return at the end a lazy list of coordinates in
different frames.
First the generator functions take the unresolved location designator and collect lazy

lists of possible solutions. The generator functions are specified with a priority value, to
specifiy the sequence in which the generator functions should be called. Therefore, the
function with the highest priority gets called first. After all generation functions were
called, a solution is verified by a sequence of validation functions by sampling from
the generated lazy lists. This means the validation function gets as input the location
designator and one generated solution. A solution will be discarded immediately, if one
validation function rejected the solution. If at least one validation function accepted
the solution and the others returned UNKOWN, the solution is accepted. A validation
function returns ACCEPT if the solution is valid or returns REJECT if it is invalid.
Moreover, if the validation function cannot decide, UNKNOWN will be returned. Fi-
nally a validation function can return MAYBE-REJECT too, meaning if the solution
will not be accepted by any other validation function then the solution will be rejected.
Since the validators and generators need to be specified from the developer, in CRAM

the generators and validators are implemented with the Location-Costmaps class.
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3.4.2.4 Action Designator

Action designators describe high-level actions which need more motions or interactions
with the environment to perform its desired task.

Referencing Since it is possible to structure cognitive actions in a sequence of
different actions [8], CRAM defines the actions as a executable hierarchical structure
[16]. In CRAM this is implemented with different types of action designators. If we want
e. g. to deliver an object the robot picked up, the robot must first navigate to a position,
then turn and look towards the position where the picked object should be placed. Each
of these actions has its own parameters ([8], [16]). Therefore, for each action an action
designator is defined with a specific action type. Every action designator will then
be resolved with the use of knowledge systems and CRAM Prolog to infer missing
paramteres. One big problem of this structuring is, that the sequence of actions builds
up an dependency of actions: e. g. the robot navigated to a position where it cannot
place an object safely. This problem is solved in CRAM by catching errors thrown e.
g. during the placing process and then resampling of loction designators with location-
costmaps (see Subsection 3.4.4) of the e. g. navigation poses. Each action sequence
ends with execution of motion designators.

3.4.3 Process Modules

Process modules are used as an interface towards the hardware dependent subsystems
of the robot. The basic approach in defining these is: they get a motion designator, they
resolve the motion designator and pass the parameters of the designator to a function,
sending the commands e. g. towards the movement system of the real robot. Since it
does not matter for the task planning how the robot moves towards the desired target
these hardware dependent actions can be excluded from the high-level robot control
program. This abstraction layer allows together with the modularization of different
process modules for more flexibility since the integration of other robots or hardware
systems needs only adaptions in the process modules.

3.4.4 Location-Costmap

Location designators describe locations in symbolic ways. Listing 2 defines in a location
designator placements for an object of object type bowl on the dining table. Therefore,
every pose on the dining table, which is suitable for the bowl, is represented by this
designator.
At runtime, this designator needs to be resolved into a specific pose in the robots

environment. As there are multiple, even an infinite number of poses, that satisfy the
symbolic description, the Location-Costmap mechanism of CRAM represents areas of
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1 ( a l o c a t i o n
2 ( f o r bowl )
3 ( on ( an ob j e c t
4 ( type din ing− tab le ) ) ) )

Listing 2: Example of a location designator

space, that satisfy these constraints. Additionally, Location-Costmaps allow to sample
randomly from these areas, to get one sample pose.
Location-Costmap is in CRAM implemented as a Common Lisp class containing

meta-information about the map, the map itself saved as a 2D-matrix and three lists
of functions named cost-functions, height-generators and orientation-generators. The
meta-information of the map contains information such as the reference point of the
map, the height and width of the map and the resolution. The map represents a distri-
bution in the by the meta-information specified area and the functions in cost-functions,
height-generators and orientation-generators are used to calculate the cost value, ori-
entation and height for different coordinates of the map.
The integration of Location-Costmap objects into the resolving process of a location

designator is done by registering the generator and validation functions of the Location-
Costmap as generators and validation functions of the location designators.
Resolving a location designator in CRAM starts therefore with the execution of the

location costmap generator function, which samples from the map of the Location-
Costmap object. If the map was not initialized yet, the cost-functions of the Location-
Costmap object create a new map by calculating a value in [0, 1] for every entry in
the 2D-matrix. Therefore, the cost values are being used as a probability value for
each point in the distribution. Points with a higher probability or cost value are more
likely to get sampled. After the distribution in map was calculated, one entry in map
gets sampled. With the sampled entry and the meta-information, it is possible to
calculate the corresponding coordinate. The coordinate gets passed to the height- and
orientation-generator functions of the Location-Costmap object, to calculate the height
and orientation of the given coordinate. The sampled coordinate with the calculated
height and orientation are then encoded as a pose. To allow resampling the sample is
returned in a lazy-list.
The location-costmap-pose-validator function gets therefore as input the location-

designator object and the generated pose, which should be validated.
Since every entry in the matrix map was calculated and created a distribution of

points, this can be visualized in the bullet simulation. Figure 1 shows an example
of the Location-Costmap objects in practice. This costmap visualizes poses for the
robot to stand to perceive the bowl. The height-generators of this costmap return a Z
coordinate of 0, as these are poses for the robot to stand on the floor. The orientation
values are not represented visually until the robot moves to the position and orientates



3 Foundations 20

itself accordingly as shown in Figure 2. The cost values are represented in the height
of the squares and in the colors from blue to red, represented as a heat map.

Figure 1: Visibility costmap of the bowl represented as Gaussian distribution

Figure 2: Visibility costmap of bowl represented as Gaussian distribution showing the
orientation of the generated/sampled and validated pose

3.5 Bullet Simulation

Bullet [5] is a free and lightweight physics engine used in CRAM (see Figures 1, 2),
which is able to simulate collision detection and dynamics of objects. It was specifically
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chosen for CRAM since it allows abstracting away low-level movements and has a basic
physics simulation for e. g. the gravitation. In the planning scope of CRAM it does not
matter how e. g. a robot moves from one position to another. Therefore, the simulation
from one position to another is cut out, which saves enormously resources during the
execution of the plans in CRAM. Generally speaking, every movement or detection on
Process Module level is abstracted in the simulation by jumping directly to the goal.
Since Bullet is able to simulate collision detection, in CRAM an error is thrown, if
the robot e. g. tries to move to the center of the table or wants to put its end-effector
inside the table. Due to the simulation, plans can be optimized through a trial and
error approach to infer parameters which could execute the plan on the real robot.

3.6 VR Data Pipeline

Figure 3: The pipline from the Unreal Engine until the robot simulation,
Figure taken from [14]

In [14] a pipeline was built to allow reasoning and planning with the collected VR data.
Figure 3 shows an abstract view of the pipeline processing the VR data. It starts with
the recording of data in the virtual environment. For this a HTC Vive setup was used.
The collected VR data is then exported with RobCoG (see Section 3.2). For executing
tasks including multiple different action plans, different plan-specific parameters need
to be filled by the planning tool CRAM [16]. Some of theses parameters can be filled
with information gathered in VR episodes. Therefore, all the VR data was imported into
KnowRob. This was done by manually inserting the subsymbolic data in the data base
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MongoDB from where it can be accessed by the KnowRob addon knowrob_robcog13.
This addon was specifically developed to reason with KnowRob on the collected VR
data. The connection of the knowledge-based system KnowRob and the planning frame-
work CRAM was established by using ROS and the package cram_json_prolog (see
Subsection 3.1.1). The package cram_json_prolog allows to send Prolog queries from
CRAM which are evaluated with knowrob_robcog in KnowRob on the collected VR
data. Since the plan execution needs specific parameters filled with fitting values, differ-
ent Prolog queries were written in the CRAM package cram_knowrob_vr14 to access
the information for specific planning tasks. The referencing of different plans in the
planner framework CRAM can therefore access specific information collected in VR
experiments. Once the action could be resolved successfully, it is simulated in the sim-
ulation Bullet.

3.7 Python Packages

Since the system that I built to learn poses for the table setting scenario was imple-
mented in Python, different Python libraries were used to establish a model in the time
frame of a bachelor thesis being feasible enough to handle the requested tasks.

Data Handling pandas was used to import the created CSV-file, since it has count-
less operations allowing to filter and categorize comfortably for specific data.

List and matrix operations numpy was used for different list and matrix opera-
tions allowing fast calculations. Moreover, numpy is utilizes by the other used libraries
too.

Visualization matplotlib was used together with scipy and seaborn to visualize the
fitted placement models.

Learning sklearn was used since it has well documented implementation of GMMs
and various other models. Moreover, it contained operations for metrics which allowed
for evaluation and debugging of the used models.

Caching diskcache was used to cache the learned object placements. Therefore,
these did not have to be initialized again after every restart.

13knowrob_robcog: https://github.com/robcog-iai/knowrob_robcog
14cram_knowrob_vr:https://github.com/cram2/cram/tree/boxy/cram_knowrob/cram_

knowrob_vr

https://github.com/robcog-iai/knowrob_robcog
https://github.com/cram2/cram/tree/boxy/cram_knowrob/cram_knowrob_vr
https://github.com/cram2/cram/tree/boxy/cram_knowrob/cram_knowrob_vr
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Communication The ROS library rospy was used to start a ROS node running
different ROS services. Moreover, it offered operations to log errors and info statements
on the network level.
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4 Approach
In this chapter the acquiring of the VR data and the built model which learned form
the collected VR data are explained and presented.

4.1 Pipeline

Figure 4: The data flow of the symbolic and subsymbolic placement information ac-
quired from VR experiments

Figure 4 shows the data flow of the symbolic and subsymbolic data collected in VR
experiments. The pipeline starts with the Unreal Engine in VR. First the human starts
acquiring data by performing VR experiments. In VR, I collected VR data by setting
the table with various objects for breakfast as explained in Subsection 4.2.1. The dif-
ferent VR experiments were then exported into JSON-files, which were imported into
the database MongoDB as explained in Section 3.6. KnowRob can access the exported
VR data in the MongoDB and allows with its interface to answer queries by reason-
ing on the acquired VR data (see Section 3.1). After the data was loaded successfully
into MongoDB, queries from CRAM (see Section 3.2) allow to access the symbolic and
subsymbolic placements of the VR objects from KnowRob. All the queried information
was then exported in a CSV-file. The contents of the CSV-file are described in Subsec-
tion 4.2.2. The built system described in Section 4.3, imports the CSV-file and learns
the placements of the used VR objects by fitting a machine learning model described
in Subsection 4.3.3.1. After the built system was initialized, it allows with its ROS
services to be queried by CRAM. Therefore, the simulated robot in CRAM can access
the learned placements of various objects during planning and executing of pick and
place tasks to set the table for breakfast like the human did in VR.

4.2 Acquisition of Data

4.2.1 RobCoG and the Unreal Engine

First, the data was collected. For this a HTC Vive Set was used including VR glasses
and a joystick for each hand. With a trigger on each of these, a hand in VR could
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be closed and opened to grasp objects in VR. The package RobCoG and the Unreal
Engine (see Section 3.2) made it possible to collect VR data comfortably with the
given hardware. The simulation in the Unreal Engine contained the same kitchen and
its furniture as in the simulation Bullet in CRAM. Thus, the furniture measurements
fit to these in the simulation in Bullet. Furthermore, the Unreal Engine allowed to
export the kitchen as a semantic map saved in a OWL-file, which allowed to load the
kitchen from the Unreal Engine in the Bullet simulation too.

Figure 5: Simulated kitchen environment showing on the left the kitchen island with
drawers and on the right the kitchen sink area. Left from the sink area is
some space on the work place and in the left corner is an oven coated from
two pull-out shelves. The right pull-out shelf is opened. The fridge is
on the right of the kitchen sink area. Moreover, this Figure shows a full
breakfast setup on the kitchen island.

With every start of a VR experiment a JSON-file was created. In this file are the
trajectories of the arms, used objects and camera saved. Thus, it includes the symbolic
and subsymbolic information of the object poses too. The object poses at the start of
picking actions and at the end of placing actions were the most interesting for fulfilling
the task described in the Hypothesis 1.2. RobCoG implemented these start and end
poses by triggering the events GraspingSomething and PlacingSomthing whenever an
object was picked or placed anywhere in the kitchen. Therefore, if the end pose of an
object instance should be queried, the PlacingSomething event allowed to distinguish
the timestamp at the end of the action, so that the object instances pose in the VR
kitchen could be retrieved. Additionally, the symbolic information contained links in
the kitchen which were manipulated by e. g. opening a drawer or closing the fridge
door.



4 Approach 26

An example event timeline is presented in Figure 6 representing the manipulation
of the kitchen and an object in VR. It shows that initially the link SinkDrawerLeft-
Middle of the kitchen supported the object Cup_80jZ. During the experiment the
SinkDrawerLeftMiddle-Link was manipulated and the cup object was grasped with
the right hand and short after that supported by the IslandArea-Link in the kitchen.
This means that a cup was grasped with the right hand out of a drawer, which was
before opened. Then the grasped cup was placed on the table with the surface called
IslandArea. At the end, the opened drawer was closed again.

Figure 6: The timeline of the VR experiment showing the manipulation of a cup and
the kitchen

To accomplish as many placement poses as possible in each VR session and collect
as many data points as possible, the table was set with different plates, bowls, cutlery,
cups, mugs and drinks. The kitchen setup in the Unreal Engine shown in Figure 5 was
copied from the real kitchen environment shown in Figure 7. Moreover, the kitchen
already stored different objects as shown in Figure 8 to e. g. set the table for breakfast
for five or more people. The kitchen stored small and big glasses, cups and mugs in the
lower drawers of the kitchen sink area as shown in Figure 5 and in the upper drawer
cutlery like forks, knives and spoons as shown in Figure 27. In the drawers of the
kitchen island different plates and bowls were hidden, which are visualized in Figure
5 too. Moreover, the fridge contained milk and orange juice. Lastly, the right pull-out
shelf in the kitchen contained different cereal types as presented in Figure 5 which were
used too.
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Figure 7: Real kitchen environment showing on the left the kitchen island with draw-
ers and on the right the kitchen sink area. Left from the sink area is some
space on the work place and in the left corner is an oven coated from two
pull-out shelves. The fridge is on the right of the kitchen sink area.
The photo shows the robot PR2 doing a pick and place task on the kitchen
island. Location: Laboratory of the Institute of Artificial Intelligence in the
University Bremen. Figure taken from [17]

Figure 8: Stored objects in the fridge (left) and all usable objects on the kitchen island
table (right). Figure taken from [11]

Since the motivation behind this bachelor thesis is to learn from specific persons, I
started recording the VR data myself. Because of the time limitations of a bachelor
thesis, the collected data set does contain only VR data from me. Since this bachelor
thesis only collected data for the context breakfast, objects were used which are com-



4 Approach 28

monly on my breakfast table. The most used objects were the big bowl, big spoon,
plate, cup, knife and cereal box, due to the fact that I eat mostly cereals for breakfast.

episode name quantity description

human-muesli-i15 5 cereals setup and ignoring pose of
the human while placing

rob-muesli-i 11 cereals setup w. r. t. the robot base
size by choosing safe standing poses

right_side_table_muesli_i 9 cereals setup only in the right
corner of the table

full_breakfast_setup_i 11 breakfast setup with different
objects

number of all episodes 36

Table 1: Collected and exported episodes

Table 1 shows how many different episodes were collected16. Moreover, every row
explains roughly what actions were recorded in VR. The “cereals setups“ were executed
in 25 VR experiments and used only the objects: big bowl, big spoon, cereal box, orange
juice, milk, glass and cup. Since during the recording phase it was not clear which model
would be the best fulfilling the required task, VR experiments were executed differently.
In the eleven rob-muesli VR experiments I tried to move in the range and position
capabilities of the robot. This means e. g. that for picking and placing of objects the
human base should be further away from the drawer or table since the robot base is
larger. The main reason behind this was to assure a “safe“ dataset containing human
poses which would be easily applicable on the real robot, if the model needed the
robot positions. Every other episode was recorded without this restriction. Episodes in
“human-muesli“ and “rob-muesli “ contain only breakfast settings for one person. The
used objects in these episodes were mostly placed on the side of kitchen island showing
towards the kitchen sink area.
Since another target in this bachelor theses included the model being powerful enough

to represent the favorite object positions of one specific person, the episodes called
“right_side_table_muesli“ were recorded. These episodes were again only “cereal se-
tups“, but the used objects were only placed in the right bottom corner of the table as
shown in Figure 9. This was done, because it was my favorite seating position.
Although only I was recording the VR data, I did setup the breakfast table in the

episodes of “full_breakfast_setup“ as shown in Figure 9 for more persons too. This
was done, because the robot should learn setups for more than one sitting position.

15the suffix “i“ in each row represents a number from 1 to the value of the quantity of collected
episodes

16Episodes: https://seafile.zfn.uni-bremen.de/d/131ec90a98ed401c9535/

https://seafile.zfn.uni-bremen.de/d/131ec90a98ed401c9535/
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Moreover, the episodes “full_breakfast_setup“ used more objects like plates, forks and
knives.

Figure 9: One full_breakfast_setup VR experiment shows how the kitchen island was
placed with big bowls, spoons, cups, a plate, knife, fork, milk, cereal box and
juice.

To query through the collected data, the JSON-files of these 36 episodes were saved
in the data base MongoDB inside the knowledge processing system KnowRob. The
documentation in [14] and an import script in bash17 made this step more comfortable.

4.2.2 Querying of KnowRob

In the paragraph contribution 1.4 was already mentioned, that additional Prolog queries
(see Section 3.2) were written in the CRAM package cram_knowrob_vr. These allowed
with the communication interface json-prolog (see Subsection 3.1.1) and ROS, to query
through the collected VR data and to export the positions of different used objects in
a structured CSV-file. This file is presented in Table 2 and explained in the following.
Every row in Table 2 represents one object instance of a given object type that

was used in one experiment. So if an object instance called Cup_jg04 of object type
cup was used in different episodes, different samples were exported in Table 2. Since
the built system should be able to learn object placements for different context e. g.
breakfast, dinner and lunch, although I only recorded data for breakfast setups, the
data had to be categorized accordingly. The first three columns context, kitchen name
and human name in the CSV-file are filled the same entries for all samples. The context
is BREAKFAST, the kitchen name is KITCHEN and the human name is THOMAS.
Moreover, the last column in the CSV-file is named table name and has for every sample

17MongoDB import script: https://github.com/hawkina/useful_scripts

https://github.com/hawkina/useful_scripts
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the value rectangular_table. All these columns were added, since it is possible that this
dataset will be extended containing different contexts or kitchen setups. Moreover, the
dataset allows to add VR experiments of other humans or of other kitchens containing
different tables. These columns strictly exist to define a hierarchical structure in the
built system, which is explained in Subsection 4.3.2.
The rest of the data in Table 2 is structured in the two subcategories. The first

subcategory shows where the used object instances were stored in the given kitchen
and the second subcategory shows where these used object were placed. The location
column in both subcategories saved on which kitchen link, i. e. specific piece of furniture,
the objects were before or after they were delivered by the human. The exact position
before or after the object instances were delivered, is recorded by saving the X and Y
coordinates in the global map frame of the kitchen. The Z coordinate was omitted, since
the kitchen objects were always placed on the flat kitchen island called IslandArea.
Moreover, the orientation of the used objects were exported too. The orientations
represent the Z rotation of the object instances in Euler angles. Lastly, the arm which
picked and placed the used objects in VR was saved. The data set contains in total
391 samples. After removing invalid object placements and objects which have to less
object placements, the data set contains 357 samples.
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Table setup for context BREAKFAST, kitchen KITCHEN, human THOMAS and table rectangular_table
storage location and pose destination location and pose

object type location x y orient. location x y orient. arm
SpoonSoup SinkDrawerLeftTop_05qp 0.96921 0.83987 3.10899 IslandArea -0.70125 1.18529 -0.02311 RIGHT
SpoonSoup SinkDrawerLeftTop_05qp 1.19926 0.82122 -3.09478 IslandArea -0.67434 1.16612 0.07456 RIGHT
SpoonSoup SinkDrawerLeftTop_05qp 1.07832 0.83979 3.14079 IslandArea -0.75685 1.20909 -0.01101 RIGHT
... ... ... ... ... ... ... ... ... ...
SpoonDessert SinkDrawerLeftTop_05qp 0.90577 0.96394 2.98784 IslandArea -1.23516 0.88701 2.3251 RIGHT
SpoonDessert SinkDrawerLeftTop_05qp 0.90577 0.96394 2.98784 IslandArea -1.21988 0.88074 2.92369 RIGHT
... ... ... ... ... ... ... ... ... ...
KnifeTable SinkDrawerLeftTop_05qp 1.39911 1.18568 3.07806 IslandArea -1.1815 0.85523 -3.04633 LEFT
KnifeTable SinkDrawerLeftTop_05qp 0.97931 1.18604 2.90333 IslandArea -0.67431 1.89031 -0.11243 RIGHT
... ... ... ... ... ... ... ... ... ...
BowlLarge IslandDrawerBottomLeft_nhwy -0.7516 1.06283 -0.50437 IslandArea -0.75099 1.06232 -0.50348 RIGHT
BowlLarge IslandDrawerBottomLeft_nhwy -0.7516 1.06283 -0.50437 IslandArea -0.70388 1.09247 -0.5129 RIGHT
... ... ... ... ... ... ... ... ... ...
PlateClassic28 IslandDrawerBottomMiddle_H0F7 -0.66267 1.80376 -0.09634 IslandArea -0.89732 0.74295 0.43176 LEFT
PlateClassic28 IslandDrawerBottomMiddle_H0F7 -0.66267 1.80376 -0.09634 IslandArea -0.92993 0.67549 0.08258 RIGHT
... ... ... ... ... ... ... ... ... ...
GlassTall SinkDrawerLeftMiddle_jqU4 0.96216 0.92014 0.00669 IslandArea -0.84748 1.84471 2.5041 RIGHT
GlassTall SinkDrawerLeftMiddle_jqU4 1.14985 0.81046 -0.00165 IslandArea -0.80293 1.93634 -2.48835 RIGHT
... ... ... ... ... ... ... ... ... ...

exported samples: 391 and filtered samples: 357

Table 2: Some samples from the exported episodes
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4.3 Object Placement Learning Model

4.3.1 Assumptions

Since the built model should not exceed the scope of a bachelor thesis, some assump-
tions were made in the first hand. Firstly, the object size is not included in the data and
neither is explicitly declared in the built model. Therefore, it can happen that objects
overlay while placing. Moreover, the saved coordinates are dependent on the specific
kitchen setup with specific furniture poses, although they could be recalculated if e. g.
the table moves in the VR kitchen or in the kitchen of the Bullet simulation. Lastly, the
data recorded only applies to the rectangular table used in the VR kitchen, otherwise
objects may fall of the table. Although CRAM checks this unstable table placements,
it would still lead to uncommon breakfast settings.

4.3.2 Architecture

The ROS package costmap_learning was implemented in Python and solves the tasks
introduced in the Hypothesis 1.2 by creating ROS services allowing the CRAM node
to query for information saved in costmap_learning.

4.3.2.1 Component Level

Figure 10 shows the communication interfaces between the two ROS nodes costmap_learning
and CRAM. In the CRAM package cram_pr2_pick_place_demo are the kitchen en-
vironment and the simulated robot PR2 loaded in the simulation Bullet.

Figure 10: The component diagram showing the services GetCostmap and GetSymbol-
icLocation of the built system costmap_learning
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Moreover, different objects, which where were used in the VR experiments too, can
be used for pick and place tasks. CRAM has a general plan for executing pick and place
tasks and currently uses heuristics to infer object placements during runtime. To replace
those, I wrote the CRAM package cram_learning_vr, which queries with the services
GetSymbolicLocation and GetCostmap the built ROS package costmap_learning as
shown in Figure 10. Hence GetSymbolicLocation and GetCostmap are ROS services,
specific information from the robots knowledge and the location designators need to be
passed, so that costmap_learning can use it for accessing the correct object placements.
The ROS services are explained in the following.

GetSymbolicLocation To get the symbolic storage or destination of an object, the
service GetSymbolicLocation uses the following parameters:

• object type, e. g. BOWL
• kitchen, e. g. KITCHEN
• table, e. g. rectangular_table
• context, e. g. BREAKFAST
• human, e. g. THOMAS
• storage-p, e. g. False, since the destination is wanted

In costmap_learning is the symbolic destination of the object inferred with values
from the location designator, which are passed in the above parameters. For inferring
the symbolic storage placements only the object type and kitchen need to be given,
since normally all humans using the same kitchen place the objects of the same type
at one specific place. The service returns the symbolic location as a string to CRAM.
In the CRAM package cram_learning_vr the returned string will be passed into a
location designator to represent the location in CRAM.

GetCostmap To get the distribution of the used objects, the service GetCostmap
uses the following parameters:

• object type
• kitchen
• table
• context
• human
• storage-p
• placed-object-types
• placed-object-coordinates
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This service needs additionally, the object types and coordinates of the objects placed
on the table IslandArea. The objects coordinates have to be in the same frame as the
coordinates in Table 2. After validating the input parameters of this service, the Learn-
ing class calls functions, which access the learned models to get the needed placements
as a distribution. The subsymbolic destination or storage placements are then returned
to CRAM. In the CRAM package cram_learning_vr the returned subsymbolic place-
ment information of a given object type will be passed into a Location-Costmap object
(see Subsection 3.4.4), thus CRAM can sample a pose for the object of the given ob-
ject type. In Chapter 5 Location-Costmap objects of different from costmap_learning
returned distributions are visualized.
Although the GetCostmap message includes exactly the same information as the

GetSymbolicLocation message, these services are not combined. This has two reasons.
Firstly, the services are modular and it is clear which type of information they return,
instead returning the symbolic and subsymbolic information in one message. Secondly,
CRAM does need to know for the planning of transporting tasks the objects symbolic
storage and destination location. After the transporting plan could be evaluated, the
following delivering action requires the subsymbolic destination placements for choosing
a robot place from which the placing task of the object could be executed successfully.

4.3.2.2 Class Level

The package costmap_learning has six Python classes shown in Figure 11. The ar-
chitecture of this system is modeled as a hierarchical structure starting with the class
Kitchen. The class Kitchen is represented by an unique name and embodies all hu-
mans, which performed VR experiments. The Human objects each have for every table
they set a Settings object. These Settings objects represent different table settings e.
g. breakfast, dinner or lunch. For each of these settings different VRItem objects are
assigned. Therefore, costmap_learning saves different object placements for different
kitchens, humans and contexts. One VRItem represents one object type used in the
VR experiments e. g. the SpoonSoup. Therefore, in one VRItem object all placements
are saved for the given specific object type, kitchen, human, table and context (e. g.
breakfast). This means, that there are more representations e. g. of the SpoonSoup
object, if e. g. two humans set the table or if the context was changed.
The concrete placement information in one VRItem object is splitted in two Costmap

objects: one representing the storage placements and the other the destination place-
ments. Moreover, next to the concrete placements the symbolic storage and destination
locations of the VRItems are saved too. The symbolic destination location is always
IslandArea, since every used object in VR was placed on the same table in the kitchen.
Therefore, the robot does not only know on which surface the object was placed or
stored, but has a distribution of the placements of the used objects too. Each con-
crete storage and destination placement of the given object type is represented by a
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Costmap object. The Costmap object copies the parameters of the VRItem object and
models the concrete storage or destination placements with a GMM. Furthermore, the
Costmap objects represent the orientations of the placed and stored objects too.
Lastly, the class OutputMatrix was implemented to export the Costmap objects in

a matrix, which could be sent back via ROS and be visualized immediately in the
simulation of Bullet inside of CRAM.
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Figure 11: The class diagram of the built system costmap_learning
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4.3.3 Implementation

In Subsection 4.3.2 were already the three most important attributes of an VRItem ob-
ject explained: the concrete storage placements in storage_costmap, the concrete desti-
nation placements in dest_costmap and the symbolic storage labels in object_storage.
The symbolic storage labels are saved in a sorted list and are therefore easy to access
and save after getting the needed values for the parameters: kitchen name, human
name, context and object type. The concrete placements of a VRItem object are in
storage_costmap and dest_costmap each represented by a Costmap object.

4.3.3.1 Model

Each storage and destination Costmap object needs to contain a model representing
the coordinates of the object placements. This model should be exportable in such way,
that it could be easily converted into Location-Costmap objects in CRAM. This would
ensure, that the planning framework will not miss any information represented in the
chosen model.
The first step in learning the object coordinates is to cluster the coordinate points

shown as different colored points in the Figure 12.

(a) The destination Costmap of the VRItem
BowlLarge visualized

(b) The destination Costmap of the VRItem
SpoonSoup visualized

Figure 12: Visualized Costmap objects of different VRItem objects BowlLarge and
SpoonSoup

For this different clusterings methods like KMeans, SVM or the Expectation-Maximization
(EM) algorithm were considered. In the Costmap class the EM algorithm with the ini-
tialization points of KMeans is used. The SVM was not chosen because the shape of
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the clusters is not complex, but has either the shape of a circle or ellipse, which can
be observed in the Figure 12. Moreover, it could not be used easily with the Location-
Costmap objects from CRAM since the SVM of a object would not represent a distri-
bution of the object placements, but only the border of the object placements. The EM
algorithm provides after converging mean and covariances values, which can be used
to create a distribution of the object coordinates. Since the shape of the clusters are
not complex, two generative models were considered: Naive Bayes (NB) and GMMs.
Both classifiers are probabilistic and could export a discrete distribution for CRAM.

The NB classifiers would be used by creating a fitted NB classifier for every clus-
ter of the object placements. Therefore, in Figure 12(a) the BowlLarges destination
placements would be represented by four NB classifier, each representing the concrete
placements of the different colored points. With a GMM, these different colored points
would be modeled by one GMM object with four components. Thus, the integration
in the Costmap class would either need n NB classifiers or one GMM classifier with
n components for modeling n clusters. Both classifiers would use the coordinates as
features and could return for every point in the distribution a probability. Furthermore,
both classifiers allow sampling.
In the Costmap class GMMs are used to model the discrete object placements. The

main reason is, that the discrete distribution for the placements of one object type rep-
resented with different NBs classifiers would not represent the collected object place-
ments. Firstly, because two clusters would influence each others exported probability
distribution, if these are connected through an edge which is perpendicular to the X or
Y axis. This can be explained by the independency between features in the NB clas-
sifiers. E. g. let us assume, that the object placement coordinates in Figure 12(a) are
modeled with NB classifiers. Then, the distribution matrix of the NB classifier with the
blue points would be influenced by the NB classifiers of the yellow and purple points.
This can be explained due to the fact, that the X probabilities of the NB classifier with
the purple points, match with the X probabilities of the blue points. Furthermore, the
Y probabilities of the NB classifier with the yellow points, match with Y probabilities
of the blue points. This would indicate a dependency from the NB with the purple and
yellow points, towards the NB classifier with the blue points, although this dependency
does not exists. Moreover, this would lead to slightly changed probability distributions
if one or more of these NB classifiers would be masked by an already placed object.
Secondly, it could not be differentiated which seating or placing position represented

by at least one NB classifiers is preferred.
GMMs do not have these two problems. GMMs are represented by a finite and fixed

number of components. Each component is represented by a Gaussian distribution.
The Gaussian distributions in one GMM each depend on a mean and variance value.
The fitted GMMs used for modeling object placements have only the X and Y coor-
dinate as features. Therefore, each mean is represented by coordinate point and each
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variance holds a two times two covariance matrix. Since the different covariances allow
to represent the expectation of dependent random variables, the components of each
GMM do not influence each other.
Moreover, the seating positions are with GMMs not all the same. Since the com-

ponents of one GMM are weighted, these value can be used to determine and encode
the favorite seating position. Furthermore, GMMs are clustered with the EM algo-
rithm after initializing the means with KMeans. In costmap_learning the Gaussian-
Mixture class from the python library scikit-learn [20] is used. Experiments with the
BayesGaussianMixture model from scikit-learn shown in Figure 13 concluded, that the
BayesGaussianMixture class is not suitable for the collected object placements, since
the covariance values of the clustered points were too large.

(a) The destination costmap of the VRItem
BowlLarge visualized

(b) The destination costmap of the VRItem
SpoonSoup visualized

Figure 13: Visualized destination costmap objects of the different VRItem objects
BowlLarge and SpoonSoup. The used model in the destination costmap
was the BayesGaussianMixture from sklearn [20], which created covariances
not fitting to the clusters of the points.

4.3.3.2 Costmaps

One important task for the Costmap objects is to save the storage or destination
placement of a VRItem object by representing the coordinates and orientations. Every
VRItem represents given the kichen name, human name, context and table, the placed
objects of one object type. The X and Y coordinates of one object type are split in
destination and storage placements (see Table 2) and therefore are each modeled by
one Costmap object. The Costmap objects in costmap_learning use as explained in
Subsection 4.3.3.1 GMMs to model the concrete object placements. The GMM uses only
the X and Y coordinates of the given object as features. The number of components
for the GMM is calculated dynamically with the silhouette score.
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Figure 12 shows the destination placements of the two VRItem objects BowlLarge
and SpoonSoup. The black outline represents the borders of the table IslandArea.
Both GMMs of the BowlLarges and SpoonSoups destination placement have four com-
ponents. Each component clusters the object coordinates visualized in different colored
points. Every component has its own multivariate Gaussian distribution, which is visu-
alized with three ellipses around the mean point of the component. The ellipses around
the mean point represent different deviations from the mean point. The first and small-
est ellipse represents the deviation of ±1

√
σ, the second and larger ellipse of ±2

√
σ and

the third and largest ellipse of ±3
√
σ from the mean point. Since costmap_learning

does not return the parameters of the Gaussian distribution, but the distribution out-
puted in a matrix, this matrix is visualized too as shown in the Figures 12. The bar
on the right in each of the Figures 12, represents the normalized values of the learned
GMMs density distribution. Therefore, the background colors from purple to yellow
show the GMMs different values for different coordinates points. Since the matrices in
the Figures 12 have limited sizes, the white background shows the coordinates which
are not covered in the matrices.
Since a human did setup the breakfast table, one cluster in the BowlLarges and

SpoonSoups destination placements, represents one seating position on the table. The
cluster at the short side at the bottom and at left side of the table show only one seating
postion. At the right side of the table the destination placements of both objects show
each two cluster and therefore two seating positions. All clusters of points presented
in Figure 12 are well covered by different Gaussian distribution. Since the third and
largest ellipse of each component reflects appropriately that 99.73%18 of the values lie
within the component, the GMMs model the placement of the Spoon and Bowl well as
shown in the Figures 12. Moreover, the heatmap from purple to yellow represents the
exported density of the GMM models accordingly.
The destination placements of the BowlLarge and SpoonSoup are overlayed in Figure

14. In this Figure the seating positions are still clearly separable from each other.
Moreover, the overlayed destination placements show, that the SpoonSoup was mostly
placed on the right side of the BowlLarge. Although the clusters of the different object
types are still separable, a certain overlay exists at each seating position between the
two different clusters.

18The empirical rule describes that 99.73% of the values lie within the margin of ±3
√
σ from the

mean
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Figure 14: The destination costmaps of BowlLarge and SpoonSoup overlayed

Next to the positions of a given VRItem object, the orientations are saved in the
destination and storage costmaps too. Therefore, the objects storage and destination
orientations are like the placements saved in different Costmap objects.
The orientations were represented as Euler angles. Therefore, every orientation was

described by the rotation around X, Y and Z axis of the object. Since the used objects in
VR were only placed on flat surfaces, the rotation around the X and Y axis were ignored.
To choose a model for orientations of a costmap object, the assumption was made, that
the rotation around the Z axis is normally distributed. Due to this characteristic, each
Costmap object has a list of GMMs each representing the orientation of one component
in the position GMM of the Costmap object. Since the destination placements of the
BowlLarge objects are bundled in four clusters as shown in Figure 12(a), the placement
GMM has four components. Each component in the placement GMM has another GMM
representing the orientation of the bundled points, thus it can be possible that multiple
preferred orientations exist for a specific object.
Since my implementation allowed to work more easily with GMMs, these were used

for the representation of orientations too. Every orientation GMM has only one com-
ponent and the orientation is the only feature. In Figure 15 are the four different
orientations of a SpoonSoup each representing orientations for a specific seating at the
table on the corresponding side of the table shown. The GMMs at the top in Figure
15 are connected to the SpoonSoups placement components which are on the right
side of the table as shown in Figure 12(b). The reason for that is, that spoons which
were placed in the area of the purple and blue points, were always perpendicular to
the next close table border placed in such way that the top of the spoon showed away
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from the next close table border. The orientation values for these placements should
be, if the spoons were always perfectly placed, zero degrees.19 Therefore, the spoons
represented by the yellow points and green points in Figure 12(b) should be rotated
around π

2 and π. Thus, the orientation GMM at the bottom right in Figure 15 rep-
resents the orientation of the yellow points and the orientation GMM at the bottom
left represents the orientation of the green points. Due to the small variances of the
orientation GMMs and the different means, this model shows that the orientation of
the SpoonSoup is important for breakfast table settings. Similar can be observed in
Figure 29 representing the orientations of the object KnifeTable.
The other objects e. g. the bowl, milk and cup shown in Figures 30, 31 and 32 do

not tend to have a preferred orientation for the placements since the variances are not
small and the means are not different. The plate object e. g. has as shown in Figure 16
always nearly the same mean and mostly high variance values. The orientation GMMs
with smaller variances compared to the orientation GMMs of the same object, could
therefore indicate that the orientation matters for some placing positions or that for
these particular placing positions the pose of the human or his hand while picking or
placing did not rotate. Since the orientation GMMs with smaller variances correspond
to the placements near the plates storage poses, the latter could explain the small
variance values.

Figure 15: The destination orientation distributions of the object SpoonSoup

19the angles in the Bullet simulation in Chapter 5 have an offset of π since the kitchen in the Bullet
simulation is compared to the kitchen in the Unreal Engine rotated around the Z axis
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Figure 16: The destination orientation distributions of the object PlateClassic28



4 Approach 44

4.3.3.3 Related Costmaps

As presented in the Hypothesis 1.2, the ROS package costmap_learning is able to
respond with relational costmaps, if objects are already placed on the kitchen island.
E. g. if one bowl was placed on the table in the simulation Bullet inside of CRAM and
the robot was ordered to place a spoon, the distribution for the spoon should be next
to the bowl that is already on the table, since the human did it in the VR experiments
too. For this a relational costmap is calculated, which will be returned, so the spoon
gets placed like in the VR experiment.
Before related costmaps can be calculated, first one must understand what in partic-

ular is in relation with each other. Every costmap object contains a placement GMM
with n components. These n components, which each represent the clustered placement
coordinates, are connected to one of the m components of another object type. In case
of bowls and spoons n and m are the same, but, e. g. the cereal box object has only
one component and is placed on the table independent of how many bowls are used. To
choose for each of n components one component of the other object type, the euclidean
distance between the means of these components are calculated. The closest compo-
nent of the other object type is then connected to the compared component. This is
done m times for each of the n components. These connected components of two dif-
ferent object types are then called relational costmaps. In costmap_learning relational
costmaps between every used object type are calculated and saved in the VRItem ob-
ject. Therefore, every VRItem contains a list with related costmaps. This procedure
would create eight relational costmaps between the destination costmaps of the Bowl-
Large and SpoonSoup. Four relational costmaps would be saved in the VRItem object
of BowlLarge and the other four would be saved in the VRItem object of SpoonSoup.
E. g., the component with purple points of the BowlLarge would be connected to the
component with blue points of the SpoonSoup, and vice versa. The connection from
the BowlLarge would be saved in the VRItem object of BowlLarge and the connections
from the SpoonSoup in the VRItem object of SpoonSoup.20 In costmap_learning two
different approaches were implemented to calculate the relational costmaps between
different object types.

First Approach In this approach the relational costmaps are only represented as
symbols. E. g. the relational costmap BowlLarge0<->SpoonSoup1 denotes that the
first component of BowlLarges destination placements and the second component of
SpoonSoup destination placements form a relational costmap. Thus, if a object of type
BowlLarge was placed in the first component of the BowlLarge, the second component

20BowlLarges related costmaps towards SpoonSoup:
[Purple→ Blue,Blue→ Purple,Green→ Y ellow, Y ellow → Green]
SpoonSoups related costmaps towards BowlLarge:
[Purple← Blue,Blue← Purple,Green← Y ellow, Y ellow ← Green]
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of the SpoonSoup would be returned, if the robot was ordered to place a Spoon-
Soup object. If two BowlLarge objects were already placed and their placements both
were in two different BowlLarge components, two SpoonSoup components from two
different relational costmaps would be returned allowing the robot to decide next to
which BowlLarge the SpoonSoup should be placed. If one BowlLarge and SpoonSoup
were already placed next to each other and satisfy the relational costmap saved in
costmap_learning, a cut destination costmap21 of the requested SpoonSoup or Bowl-
Large would be returned. The four relational costmaps between the BowlLarge and
SpoonSoup are visualized in Figure 14. Since this approach has less assumptions as
the second approach and is more appropriate for representing relations between the
different costmaps, it is used in costmap_learning. All possible use cases are covered
in the Chapter 5.
In the following a more complex approach that contained more information is ex-

plained. Since it is still possible, that the components of relational costmaps overlay
greatly, another approach has been developed and implemented, which was very promis-
ing but had a number of issues. Although it was later discarded and is not used, I would
still like to explain it because it shows the GMMs useful capabilities and limits.

Second Approach This approach saves additionally to the symbolic representa-
tion of the relation costmap a new GMM. Instead of using the components of the
destination placements, the related components get clustered again in a GMM with
two components. This means that the relational costmap BowlLarge0<->SpoonSoup1
would create a new GMM with the first component of the BowlLarges destination
placements and the second component of the SpoonSoups destination placements. Al-
though, the object placements are labeled, the new relation costmap GMM would
cluster the coordinates in the both components again in two components. This be-
havior was wanted, hence it could reduce the overlapping between two components in
the relational costmap. To get the relevant component from the relational component,
costmap_learning would calculate which component represents the placement of the
BowlLarge the most likely. Let us assume, that e. g. a BowlLarge was already placed on
the table IslandArea in the kitchen and the robot is now ordered to place a SpoonSoup
too. Figure 17 shows four plotted relational costmap objects representing the relation
between the BowlLarge and SpoonSoup. During runtime costmap_learning would on
the basis of the BowlLarges pose on the table, calculate which of the eight components
in Figure 17 represent the placement of placed BowlLarge the best. If the component
with the highest probability was chosen, costmap_learning returns the other compo-
nent in the relational costmap. In case that e. g. the component with purple points
from BowlLarge1<->SpoonSoup0 as represented in Figure 17(b) represented the Bowl-

21Cut costmaps contain only one to n− 1 of n components.
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Larges placement the most, the component with the yellow points would be returned
for the placement of the SpoonSoup.

(a) This relation costmap consists of the com-
ponent 0 of BowlLarge and the component
1 of SpoonSoup

(b) This relation costmap consists of the com-
ponent 1 of BowlLarge and the component
0 of SpoonSoup

(c) This relation costmap consists of
the component 2 of BowlLarge and
the component 3 of SpoonSoup

(d) This relation costmap consists of the component 3 of
BowlLarge and the component 2 of SpoonSoup

Figure 17: Visualized relational costmap objects between the different VRItem objects
BowlLarge and SpoonSoup
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The issues with this approach are presented with the relational costmaps shown
in Figure 17. Because the BowlLarge destination costmap has four components, four
relational costmaps between the BowlLarge and SpoonSoup were created.22 Since the
relational costmap clustered again the points in the components of the SpoonSoups and
BowlLarges destination costmap, the accuracy for each relational costmap was calcu-
lated. Although, not all placements of the BowlLarge and SpoonSoup are represented
correctly in the relational costmap of BowlLarge1<->SpoonSoup0 shown in Figure
17(b), the two components in the relational costmap seem to distinguish better the re-
lation between SpoonSoup and BowlLarge, since the overlapping could be reduced. The
difference of overlapping between the relational costmap BowlLarge1<->SpoonSoup0
and the components of the destination costmap of BowlLarge and SpoonSoup was not
compared. Due to the major problems of this approach with the related costmaps,
the difference in overlapping was neglected. This approach seemed only to work with
clusters, which were already good enough to be distinguished from each other as rep-
resented by the relation costmap of BowlLarge2<->SpoonSoup3 in Figure 17(c). Since
the clustering ignored the labeled points, it is possible that components which overlay
greatly, are clustered together. An example of this behavior is presented by the rela-
tional costmap BowlLarge0<->SpoonSoup1 in Figure 17(a). Moreover, it would create
unusable SpoonSoup and BowlLarge placements. If e. g. the BowlLarge was placed
in the component with the yellow points, costmap_learning would always return the
small costmap with the purple points as placement distribution for the SpoonSoup.
This would be the same, if the placed object was the SpoonSoup first, since all Spoon-
Soup placements are in the component with the yellow points.
Lastly, the new created relational costmaps could create components, that are hard

to understand. The BowlLarge3<->SpoonSoup2 relational costmap shown in Figure
17(d), clustered the placements of BowlLarge and SpoonSoup in two components. Ei-
ther one component has 2

3 of the BowlLarge placements and the other has 2
3 of the

SpoonSoup placements or one component has each 2
3 of the SpoonSoups and Bowl-

Larges placements.

4.3.3.4 Algorithm

Since the objects destination placements depend on the human, the calculation re-
turning the destination placements is mostly implemented in the Human and VRItem
class. The algorithm for choosing the components which should be returned is explained
roughly in the following.
The object type for which a costmap should returned to is called in the following

o. First the algorithm checks, if every placed object has the object type o. If this is

22The other four relational costmaps between SpoonSoup and BowlLarge are here ignored.



4 Approach 48

true, the destination costmap of the object type o is returned. Components, which are
already covered by the placed objects, are cut out.
Otherwise, the algorithm starts by choosing a placed object type, which is called op

in the following. The algorithm tries then to find any placed object with the object type
op, which might have a free relational component for objects with the object type o.
Since the relational component between o and op could be already masked by another
placed object of type o, op will be changed to another placed object type if no free
relational costmap was found. If free relational costmaps were found, the components
for the object type o from the relational costmaps are returned.
After trying unsuccessfully every placed object type, a cut destination costmap of

the object type o is returned.
Since the visualized destination costmaps in CRAM are used to evaluate the built

system costmap_learning, the algorithm returning these destination costmaps is ex-
plained with examples in Chapter 5.
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5 Evaluation
The proposed and implemented pipeline was evaluated by requesting object placements
in different kitchen states, and checking if the responded distributions were suitable for
breakfast settings. For this different placements for the spoon and bowl are presented
in the following.
The Figure 18(a) shows the destination costmap23 of the spoon after the initialization

of the kitchen as a heatmap in the simulation Bullet. Since no object is placed on
the kitchen island table, all components of the GMM in the destination costmap of
the spoon were returned. All four components are in CRAM strictly distinguishable
and represent clearly different seating positions. The simulated robot PR2 will sample
one pose from the visualized components and place the spoon accordingly as shown in
Figure 18(b). Since each of the four components has its own orientation representation,
the different components orientations can be visualized. The purple arrows in Figure
18(a) show the position and orientation of the sampled spoon poses24. All arrows point
strictly away from the next close table border.

(a) The destination
costmaps of the object
spoon25with sampled
poses visualized with
arrows

(b) The simulated robot PR2 places
the spoon with the destination
costmap of the object spoon

(c) The destination
costmap of the object
spoon after one spoon
was already placed
on the kitchen island
table

Figure 18: Visualized costmaps of the object type spoon

23the returned distribution from costmap_learning was represented in CRAM by a Location-Costmap
object 3.4.4. Due to readability, henceforth Location-Costmap objects are referred to as costmaps.

24the Z rotation modeled in the components orientation GMM was sampled with the box-muller
transform
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Moreover, arrows in the same component are nearly parallel to each other, although
the orientation differentiate greatly in general26. Therefore, the spoons orientations fit
to the representation as shown in Figure 15 and as explained in Subsection 4.3.3.2.
Figure 19(a) visualizes the destination costmap and sampled poses for the object

knife. Once more, the orientations of the purple arrows show that the orientation of the
knife is dependent from the component and barely changes in the component too. This
was expected too, since the orientation Figure 29 from costmap_learning indicated the
orientation of the visualized arrows. Lastly, the Figures 19(b) and 19(c) show visualized
samples from the destination costmap of the bowl and plate. The orientation of the
arrows does not change drastically inside the different components as shown in the
bowl and plate components in the Figures 19(b) and 19(c). Nevertheless, this does not
indicate, that the orientation matters for the bowl and plate, since the means of the
components orientations do not change drastically for both objects compared to the
means of e. g. the SpoonSoups components orientations as shown in Figure 15.

(a) The destination costmap
of the objects with type
knife

(b) The destination costmap
of the objects with type
bowl

(c) The destination costmap
of the objects with type
plate

Figure 19: More destination costmaps for objects with the types knife, bowl and plate

Since costmap_learning allows to send additional information about the changed
environment, the robot can access cut destination costmaps leading to more efficient
25The objects of type spoon, bowl, knife and plate in the Bullet simulation are equivalent to the

objects SpoonSoup, BowlLarge, KnifeTable and PlateClassic28 from the Unreal Engine
26orientations differentiate greatly, if the difference between these are not anymore in the margin of
±π/2
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planning. If the robot wants to place a spoon object after placing already one at the
kitchen island table, costmap_learning will not respond with four spoon components,
but with three as shown in Figure 18(c). Since the robot knows, that it placed one
spoon object on the kitchen island table, it passes this information to the ROS package
costmap_learning. costmap_learning checks in which of the spoon components the
spoon is most likely placed in and cut it out of the returned distribution. Therefore,
three components get returned for the placing of the spoon. The Figures 33(a) and
33(b) represent the same behavior, but with a bowl instead. Since the ROS package
costmap_learning does not save the state of the kitchen, but uses only the inputed
placement information, it can theoretically be used with more robots using the same
kitchen too.
Let us assume, that after the first spoon was placed, a bowl should be placed on

the kitchen island table. Since the pose of the placed spoon gets again transmitted
to costmap_learning, the built package can check now which relational costmaps rep-
resents the wanted placement the best. First costmap_learning finds the component
of the spoon which covers most likely the spoons placements. After that the VRItem
object of the spoon checks its related costmaps for a relation between the calculated
spoons component and another bowl component. If a relational costmap was found,
only the component of the bowl gets returned. The returned component for the bowl
is presented in Figure 20(a). This works too, if instead of the spoon a bowl was placed
on the kitchen island table and a spoon should be placed as presented in Figure 20(b).

(a) Relational costmap of the bowl
after one spoon was placed

(b) Relational costmap of the spoon
after one bowl was placed

Figure 20: Visualized relational costmaps of the different object types spoon and bowl

Moreover, costmap_learning recognizes, if the relational costmap is already masked
by two different objects. If e. g. a bowl and spoon were already placed next to each
other as shown in Figure 21(a), costmap_learning recognizes the covered relational
costmap and does not return it. If no other relational costmap can be found, a cut
destination costmap of the wanted object will be returned as presented with object
bowl in Figure 21(a). But if another relational costmap was found, since e. g. another
spoon was placed on kitchen island table as shown in Figure 21(b), costmap_learning
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returns the component which is in relation with the placed spoon and has the wanted
object type.

(a) Costmap for placing the
object of type bowl

(b) Relational costmap for
placing the object of
type bowl next to the
spoon

Figure 21: Visualized costmap for placing objects of type bowl

The generic procedure returning the correct destination costmaps in costmap_learning
can be applied on different kitchen states. The Figures 22(a), 22(b) and 22(c) show
more complex use cases for breakfast table settings. Figure 22(a) shows the correct
returned destination costmap for a bowl after two bowls and spoons were already
placed next to each other. Therefore, the relations between each spoon and bowl get
recognized from costmap_learning and thus are not returned. Instead the destination
costmap of the bowl returned only components being not masked by the placed bowls.
Figure 22(b) shows another use case of a cut destination costmap of the object type
bowl. The bowl at the bottom of Figure 22(b) was placed with a sampled pose from
the two components visualized in Figure 22(a). Since costmap_learning do not allow
reflexive relations, the destination costmap for the bowl returns one component. Lastly,
the Figure 22(c) shows, that costmap_learning can return components of multiple re-
lational costmaps too, if there are enough objects placed to which a relation can be
established. In particular, the Figure 22(c) shows that two bowls have each no spoon
placed next to it. costmap_learning therefore returns both relational components rep-
resenting the spoon placements. Without relational costmaps, three components for
the spoon would be returned. Thus, for breakfast settings the robot must not check, if
next to the desired spoon placement a bowl was placed.
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(a) Two components in a
costmap for objects
with type bowl

(b) One component in a
costmap for objects
with type bowl

(c) Two components
in a costmap for
objects with type
spoon

Figure 22: Visualized costmaps for objects of type bowl and spoon in other table setup

Since the model in costmap_learning did learn the storage placements too, these
can be retrieved and visualized too. Figure 23 shows the storage costmap of the spoon.
Since the spoon was grasped, after the drawer holding the spoons was opened, the
storage costmap visualizes from where the spoons were grasped from after opening the
drawer. Another storage costmaps is shown in the Figure 33(c) presenting the storage
placements of the bowl. Moreover, the learned orientations allow the robot to grasp
the objects accurately too. Figure 34 shows the spoons and bowls storage orientations
with visualized sampled poses.

Figure 23: Visualized costmap of the storage placements of the spoons
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6 Conclusion

6.1 Summary

To summarize, the built ROS package costmap_learning achieves the goal explained
in the Hypothesis 1.2. The robot can use the developed package to store objects like
the human did by acquiring the symbolic locations and subsymbolic placements of the
different objects. For table settings, it will use the same objects and place them by
imitating the human. Therefore, the used models of the object placements encode the
commonsense of the human. Moreover, the robot can utilize its knowledge around the
environment to get more accurate object placements with relational and cut costmaps
to assure robust table settings with faster planning times. This concludes in fast and
appropriate breakfast settings for different kitchen setups without the use of any static
heuristics.

6.2 Discussion

Although, the implemented system covers the requirements for placements of the ob-
jects used in a breakfast scenario, still different problems arise with the current im-
plementation. One existing problem is, that the object coordinates were recorded in
the global map frame. If the table would be moved in the Unreal Engine in VR or
in the simulation Bullet in CRAM, objects would not be placed accordingly on the
kitchen island table. Therefore, the objects coordinates should be recalculated in the
base frame of the kitchen island table. The model used in costmap_learning could use
these recalculated positions without any adjustments.
Moreover, currently the favorite seating position is not represented in the visual-

ized costmaps as shown in Figure 33(a), since all components have the same weight.
Although, the destination placements GMMs inside of costmap_learning did encode
favorite seating positions of different items, this parameter was omitted in the dis-
tribution returned to CRAM. The same weight of every component allowed during
evaluation and debugging better testing results, since objects were placed more often
in different components.
Another minor problem is, that placed objects can be pretty close to each other

since the object sizes are not modeled. This problem could be reduced by cutting
the returned components. Since CRAM checks with the simulation Bullet if during a
object placement, collisions with the placed objects occur, stacking objects was always
circumvented.
Moreover, relation costmaps can cause problems because they do not represent classes

of different objects. If e. g. a plate was placed on the kitchen island table, the relational
costmap for a bowl would return a distribution covering the placed plates placements
too. This can either, be a wanted behavior if e. g. object should be stackable or should
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be specified with different object classes e. g. cutlery or dishes. This problem could be
solved by sending not only the placed object types and positions to costmap_learning,
but the object classes too. The implementation in costmap_learning needed only small
adjustments to allow this new behavior. Additionally, it could be discussed if one-
to-one-relations are sufficient enough for table settings or if other multiplicities for
relations could be relevant.
Lastly, clustering problems of some object types do exist, due to the lack of density

in the collected data set. Therefore, object placements of e. g. the cup were clustered
in just two clusters as represented in Figure 24(a), although clustering in at least five
components would represent the points better. Even after the component number was
set fixed to six (see Figure 24(c)), since the Silhoutte score did not change much as
shown in Figure 35, the orientations of the sampled poses of each component visualized
in Figure 24(b) show still a high variances. This does not represent the orientations
of the cups from the VR experiments exactly. Moreover, the object cup had the most
complex object placements, since I did not choose always the same placement for every
seating position27. Thus, if the borders28 of the objects destination placements are set
to be closer to each other, much more data is needed to achieve clusters modeling
appropriate object placements. At the end, it could still be, that the GMM would
cluster cup placements for two different seating positions in one component. Therefore,
the number of seating positions should be learned from the learned dishes and cutlery
placements, instead of using the silhouette score. The number of seating positions could
allow to create a hierarchic structure for object placements, so that object placements
could concentrate on specific seating positions instead of the whole table.

27If e. g. a bowl was placed, the cups were sometimes placed on top right or on the top left of the
bowl.

28since the GMMs are a continuous model, border denotes in this context the points which depart
with ±3

√
σ from the mean
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(a) Two components in a costmap
for object with type cup with
sampled poses

(b) Six components in a
costmap for object with
type cup with sampled
poses

(c) Six components in a costmap for object with type cup

Figure 24: Visualized destination costmap for objects of type cup
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6.3 Future Work

First, the coordinate frame in which the objects were recorded, should be changed
to the base frame of the kitchen link on which the objects were placed. This would
allow to move the table resulting in various possible kitchen setups and would make
the object placements only depend on the particular table shape and not anymore
on its pose in the kitchen. Moreover, different tables could be used in smaller sizes
and/or other shapes. With the measurements of the different shaped table, the learned
object placements could be transformed for smaller or bigger tables of the same shape
type. Additionally, costmap_learning could learn not just the placements of the objects
destination or storage, but for other intermediate destinations too. Thus, objects could
be placed first e. g. on a tray and then be transported on the tray to the table. The
robot could learn where to put the tray for loading it with different objects and where
to place it to put these objects to their final position. Moreover, the robot would learn
the placements of the used objects on the tray.
Furthermore, it could be investigated, if the order in which the objects were placed

could matter for faster table settings and if the robot would perform better. Due to,
the limitation that currently one robot arm can only pick one object, other cognitive
behaviors could be considered for more complex pick and place tasks with objects.
Another approach to make planning more efficient would be in learning the robot

poses for pick and place tasks of the different objects. The robot poses could be clus-
tered to assure more accurate sampled robot poses for placing objects on different
seating positions. A requirement for this would be, that the human recording the VR
experiments could only move in the range of the robot.
Lastly, the information recorded in the VR data allows for various other imitation

learning approaches. The humans arm movements could be used to learn e. g. pouring
or cutting motions of particular objects, so that the robot can interact more robust
and convenient with household tasks in the kitchen environment.
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Appendix

Figures

Figure 25: Prolog definition of the rule friends with the facts likes29

1 ; ; d r i v e
2 (<− ( de s i g : motion−grounding ? de s i g ( d r i v e ?motion ) )
3 ( desig−prop ? de s i g ( : type : d r i v i ng ) )
4 ( desig−prop ? de s i g ( : speed ? speed ) )
5 ( l i sp− fun make−turtle−motion : speed ? speed ?motion ) )

Figure 26: Referencing of a simple motion designator of type drive30. Prolog variables
start with the prefix “?“. In line 3 desig-prop checks if the given des-
ignator ?desig contains the key :type with the value :driving. In line 4
desig-prop checks if the given designator ?desig contains a key :speed and
writes the value in ?speed. In line 5 the lisp function make-turtle-motion
gets called with the arguments :speed, the assignment of ?speed and writes
the result in ?motion. If the facts desig-prop and the function call of
make-turtle-motion returns not nil, the lisp function drive with the re-
sult of make-turtle-motion in ?motion gets executed.

30Author: Vishma Shah, Website: http://athena.ecs.csus.edu/~mei/logicp/prolog/
programming-examples.html

30Author: Gayane Kazhoyan, Website: http://cram-system.org/tutorials/beginner/motion_
designators#defining_inference_rules_for_designators

http://athena.ecs.csus.edu/~mei/logicp/prolog/programming-examples.html
http://athena.ecs.csus.edu/~mei/logicp/prolog/programming-examples.html
http://cram-system.org/tutorials/beginner/motion_designators#defining_inference_rules_for_designators
http://cram-system.org/tutorials/beginner/motion_designators#defining_inference_rules_for_designators
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Figure 27: Cutlery drawer from the kitchen sink area in the Unreal Engine

Figure 28: Cutlery drawer from the kitchen sink area. Figure taken from [11]
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Figure 29: The destination orientation distributions of the object KnifeTable
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Figure 30: The destination orientation distributions of the object BowlLarge
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Figure 31: The destination orientation distributions of the object Cup

Figure 32: The destination orientation distributions of the object BaerenMarke-
FrischeAlpenmilch38
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(a) The destination costmap of
the objects with type bowl

(b) The destination costmaps
of the objects with type
bowl after one bowl was al-
ready placed

(c) Storage costmap of the objects of type bowl

Figure 33: Visualized costmaps for objects with the object type bowl
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(a) The storage orientations of the objects with type spoon

(b) The storage orientations of the ob-
jects with type bowl

Figure 34: Visualized storage costmaps visualized with purple arrows for objects of
type spoon and bowl
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Figure 35: Silhouette scores for clusters quantities of objects with type cup
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