

Institute for Artificial Intelligence University Bremen

IROS 2023 Tutorial

Robot Programming with CRAM

Arthur Niedźwiecki October 05th, 2023

First assignment:

First assignment:

Install Linux

First assignment:

- Install Linux
- Set up SSH and GitHub

Tutorial: Robot Programming with CRAM

First assignment:

- Install Linux
- Set up SSH and GitHub
- Install Robot Operating System (ROS)

M

First assignment:

- Install Linux
- Set up SSH and GitHub
- Install Robot Operating System (ROS)
- Install this...

. 0

First assignment:

- Install Linux
- Set up SSH and GitHub
- Install Robot Operating System (ROS)
- Install this...
- Install that...

Epines

. 0

• Requires specific operating system

- Requires specific operating system
- Collides with existing software

- Requires specific operating system
- Collides with existing software
- Complex and fragile setup takes time

- Requires specific operating system
- Collides with existing software
- Complex and fragile setup takes time
- Documentation has low priority

Into the cloud - Virtualization

How can I make my platform easier accessible?

Agenda

Abstract Machine

2 CRAM Plan Executive

Primitives Parameters Designators

3 Tutorials

Agenda

Abstract Machine

2 CRAM Plan Executive

Primitives Parameters Designators

3 Tutorials

Motivation

One plan to accomplish all variations of fetch and place:

• different objects, environments, robot platforms, applications.

Abstract Machines in Computer Science

Adapted from Pedro Domingos: "What's Missing in AI: the Interface Layer"

Field	Interface Layer	Below the Layer	Above the Layer
Operating Systems	virtual machines	hardware	software
Programming	high-level	compilers,	programming
systems	languages	optimizers,	
Databases	relational model	query optimization, db	enterprise
		transaction momt	applications
		transaction mgmt	

Abstract Machines in Computer Science

Adapted from Pedro Domingos: "What's Missing in AI: the Interface Layer"

Field	Interface Layer	Below the Layer	Above the Layer
Operating Systems	virtual machines	hardware	software
Programming	high-level	compilers,	programming
systems	languages	optimizers,	
Databases	relational model	query optimization, db	enterprise
		design,	applications
		transaction mgmt	
Personal robotics	CRAM	grounding in robot, Al	robot application pro-
		tools, the nuts and bolts	gramming
		of intelligent robotics,	

Raise the conceptual level at which service and personal robot applications are programmed!

Agenda

Abstract Machine

2 CRAM Plan Executive

Primitives Parameters Designators

3 Tutorials

CRAM 2.0 system

CRAM 2.0 system - Plan Executive

Challenges Tackled by the Plan Executive

- 1 Define which actions to execute to achieve the goal.
- 2 Infer which parameters to use for each action.
- Onitor task execution and react to failures.

Primitives: Motions and Percepts

Primitives of Mobile Pick and Place for PR2-like Robots

Primitive	Description
moving-base	Move the base to the target pose.
moving-arm	Move the joints of the arm / arms to the target configuration
	in joint, cartesian or constraint space.
moving-finger	Move the joint of the hand / hands to the target joint position.
gripping	Close the hand / hands to grasp an object.
moving-torso	Move the torso joint to the target joint position.
moving-neck	Move the neck to the target configuration or to direct the
	camera gaze to a target pose.
detecting	Detect the described object in the environment and update
	the internal world state with the acquired information.
monitoring-joint-states	Monitor if the joint positions of robot body parts exceed the given threshold.

IROS 2023

Parameters of Motion and Perception Primitives

Primitive	Parameters
moving-base	goal_pose,, speed,
moving-arm	goal_pose_for_hand, goal_positions, collisions,
moving-finger	goal_position
gripping	hand, grasping_force, object_properties,
moving-torso	goal_position,
moving-neck	goal_positions, goal_coordinate_to_look_at,
detecting	object_description,
monitoring-joints	joint_name, joint_value, monitoring_function,

Calculating parameter values that maximize success probability: heuristics, learning from experience, imitation learning, ask a human

Choice of Parameter Values is Crucial For Success

 Often very many possible values to choose from

Example: from which side and with which hand to grasp?

- Effects can be:
 - immediate
 - short-term
 - Iong-term

Action Designators: Searching

Combining primitives into high-level actions

Agenda

Abstract Machine

2 CRAM Plan Executive

Primitives Parameters Designators

3 Tutorials

Robot Control with PyCRAM

http://cram-system.org/tutorials/

Overview

Time	Session
8.30 - 8.45	Opening: Michael Beetz & Jörn Syrbe
8.45 - 10.00	Introduction - Michael Beetz
10.00 - 11.00	COFFEE BREAK
11.00 - 12.30	Hands-on Robot Control in CRAM – Arthur Niedźwiecki
12.30 - 1.30	LUNCH
1.30 - 3.00	Hands-On Robotics Simulation in Multiverse – Giang Nguyen
3.00 - 4.00	COFFEE BREAK
4.00 - 5.30	Hands-On Knowledge openEASE – Sascha Jongebloed
5.30	End

