
UNIVERSITY OF BREMEN

BACHELOR THESIS

PyCRAM – Python-based concurrent
reactive programming language for
autonomous mobile manipulation

PyCRAM – Python-basierte nebenläufige reaktive

Programmiersprache für autonome mobile Manipulation

Authors:
Andy AUGSTEN

Dustin AUGSTEN

Supervisors:
Prof. Michael BEETZ PhD

Dr. Daniel GROSSE

Advisor:
Gayane KAZHOYAN

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Institute for Artificial Intelligence
Center for Computing and Communication Technologies (TZI)

February 11, 2019





iii

Declaration of Authorship
I, Andy AUGSTEN, declare that this thesis titled, “PyCRAM – Python-based concur-
rent reactive programming language for autonomous mobile manipulation” and the
work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:





v

Declaration of Authorship
I, Dustin AUGSTEN, declare that this thesis titled, “PyCRAM – Python-based con-
current reactive programming language for autonomous mobile manipulation” and
the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:





vii

UNIVERSITY OF BREMEN

Abstract
Faculty of Computer Science

Center for Computing and Communication Technologies (TZI)

Bachelor of Science

PyCRAM – Python-based concurrent reactive programming language for

autonomous mobile manipulation

by
Andy AUGSTEN

Dustin AUGSTEN

Mobile manipulation robots that work in a domestic environment such as a housh-
old have made solving tasks like cleaning up possible. Researches have already
given solutions for navigation and manipulation but the complexity of control pro-
grams to solve such tasks rises. Thus we need high level executives to be capable of
doing a general and flexible planning and have to give it the possibility to abstract
from the robot’s hardware. In our thesis we describe PyCRAM which is a frame-
work to accomplish exactly this using the Python 3 programming language.

Three main modules of PyCRAM are the Plan Language, Designators and Process
Modules. The Plan Language is a domain specific language on top of Python which
provides an easy error handling concept with the ability of re-execution. It supports
the user in developing highly concurrent control programs to monitor different sen-
sors in parallel without having to set up complex threading structures and without
having to care about synchronization. To make control programs as general and
flexible as possible, designators – as concept of symbolic plan parametrization – can
be used to describe motions but also objects and locations. Process modules allow
to abstract from the robot’s hardware by separating the hardware communication
from the action plan. This, for example, allows to create a plan to pick up an item
and use it with both, a robot with only one arm and a robot with two arms, whereby
the process modules implemented for each of the two robots decide how to execute
it.
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Mobile Roboter, die in einer häuslichen Umgebung wie einem Haushalt arbeiten,
ermöglichen das Lösen von Aufgaben wie Aufräumen. Forschungen haben bere-
its Lösungen für Navigation und Manipulation bereitgestellt, aber die Komplexität
von Kontrollprogrammen zur Lösung solcher Aufgaben steigt. Deshalb brauchen
wir High-Level-Anwendungen die in der Lage sind eine allgemeine und flexible
Planung durchzuführen, und müssen diesen die Möglichkeit geben von der Hard-
ware eines Roboters zu abstrahieren. In unserer These stellen wir PyCRAM vor, ein
Framework mit welchem genau dies in der Programmiersprache Python 3 möglich
ist.

Drei Hauptmodule von PyCRAM sind die Plan Language, Designatoren und Prozess-
module. Die Plan Language ist eine domänenspezifische Sprache, die auf Python
aufbaut und ein einfaches Fehlerbehandlungskonzept mit der Möglichkeit der erneuten
Ausführung bietet. Sie unterstützt den Anwender bei der Entwicklung von stark
nebenläufigen Kontrollprogrammen, die zeitgleich verschiedene Sensoren überwachen,
ohne dass dieser sich dabei mit komplexen Thread-Strukturen oder Synchronisation
auseinandersetzen muss. Um Kontrollprogramme so allgemein und flexibel wie
möglich zu gestallten, können Designatoren – als Konzept der symbolischen Plan-
parametrisierung – zur Beschreibung von Bewegungen sowie Objekten und Stan-
dorte genutzt werden. Prozessmodule ermöglichen die Abstraktion von der Hard-
ware des Roboters, indem die Hardwarekommunikation vom Ausführungsplan ge-
trennt wird. Auf diese Weise kann man beispielsweise einen Plan erstellen, um einen
Gegenstand aufzunehmen, und ihn sowohl mit einem Roboter mit nur einem Arm
als auch mit einem Roboter mit zwei Armen verwenden. Dabei entscheiden die
Prozessmodule, die für jeden der beiden Roboter implementiert wurden, wie dieser
ausgeführt wird.
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Chapter 1

Introduction

1.1 Problem Description

In the state of the art robotics there is a lack of high-level programming languages
for autonomous robots, with which the programmer could easily represent event-
guided behavior, failure handling and recovery mechanisms. An example of a task
that would benefit from such a language could be setting a table for dinner. Al-
though such a task seems simple for a human being, it is but the opposite for a robot
and requires large constructs of code. There are many factors that need to be consid-
ered like is the location of the dishes and the table known to the robot or does it have
to search for it, which dish or table to pick if there are several, what to do when there
suddenly appears an obstacle, i.e. a pet walking in front of the robot, how to pick the
items and how to place them to not create collisions and many more some of which
need parallel execution or retry constructs. In order to not collide with an obstacle
for example the robot needs to monitor its sensors while doing actions at the same
time like moving. Or in case the robot fails to pick up an item as seen on Figure 1.1
(p. 2) because it was not found at the assumed location an retry construct is needed
to retry the pick up action with adjusted values. Another important factor that must
not be underestimated is the rapid development and production of software and
hardware these days and the wide variety of different devices that go with it. While
one user might be using robot A another user might want to use robot B which does
not have two but only one arm and thus is a little cheaper. To make the software
work on both robots nonetheless it would be convenient to be able to transfer the
software to a different robot process module and make it work without any further
changes. Using high-level programming languages for autonomous robots helps to
simplify such tasks by using the provided mechanisms such as parallel execution,
failure handling and retrying constructs or even support for different process mod-
ules.

CRAM Plan Language (CPL) [Mösenlechner, 2016] is such a language that provides
powerful constructs for doing the above. However, CPL is implemented as an ex-
tension of the Lisp programming language and deeply relying on its macro mecha-
nisms, which are more powerful and flexible than that of the other more mainstream
programming languages, but Lisp is also a rather exotic language nowadays, hence
it does not get the attention it could be getting if it was not for Lisp but a more widely
spread programming language such as C++ or Python.

The research question that is tackled in the thesis is if it is possible to implement CPL
with all its rich features in a more widely accepted programming language such as
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Python which is a widely used general-purpose programming language and is cur-
rently often used for developing high-level executives by the robotics community.

To answer the research question, around the course of this thesis, a high-level robot
control programming language, PyCRAM, that is based on CPL and provides a sub-
set of it is to be developed as an extension of the Python language to make tasks
for robots more robust, reliable and flexible and can be used naturally by a Python
programmer and be easily and intuitively understood. PyCRAM includes a plan
language for the easier implementation of concurrent reactive programs as well as
a symbolic plan parametrization to specify entities such as motions, objects and lo-
cations by naming these or describing their properties in a more abstract way and
process modules to execute the action entities regardless of the platform the program
is running on.

FIGURE 1.1: The PR2 robot retrying a pick up task because the as-
sumed location of the item was wrong.

1.2 Related Work Author: Dustin AUGSTEN

Among the robot programming community there already are quite a few domain-
specific-programming languages or language extensions like the CRAM Plan Lan-
guage [Mösenlechner, 2016] which this work is based on, or McDermott’s RPL [Mc-
Dermott, 1991] which is the direct ancestor or CRAM. But there are also other con-
cepts, ideas or works which alongside the mentioned ones are presented in this chap-
ter.

CRAM

CRAM is described in more detail in chapter 2.

McDermott’s reactive plan language Author: Andy AUGSTEN

Basically this work is for CRAM what CRAM is for PyCRAM: its model or ancestor.
CRAM tries to reimplement this work even if in its own way. What sets the two
works apart is that McDermott’s RPL, unlike CRAM, is not really utilizing the full
capacity of multicore processors but only simulates concurrency by shuffling the
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interpretation order of expressions randomly. Also RPL programs are evaluated by
an interpreter just like PyCRAM while CRAM is compiled to machine code.

PYROBOTS Author: Andy AUGSTEN

PYROBOTS [Lemaignan, Hosseini, and Dillenbourg, 2015] is an embedded domain-
specific language (eDSL) that has been developed similar to the work presented
in this thesis to address the lack of high-level-programming languages for robots,
which according to the authors comes from different reasons like the software archi-
tecture these languages enforce or because they are not practical as they come with
an unfamiliar language or difficulties at the setup etc.

In general PYROBOTS is a lightweight python library providing useful tools. After
defining a robot class as an instance of a GenericRobot class that needs to contain all
the required low-level controllers and states of the robot, the programmer can start
defining actions, declare arbitrary resources and create events that are monitored by
the robot and can have callbacks attached to them. Actions are Python functions
with an @action decorator that turn these into background actions. They are non-
blocking by default but can be made blocking by locking predefined resources using
a @lock(RESOURCE) decorator. In that case the function will block the given resource
and any call of a function trying to lock that same resource will always wait for the
resource to be available before executing. Also actions can be cancelled at any given
time.

Unlike our work, however, PYROBOTS does not try to abstract away different robot
specifications, it solely provides an easy to use toolset for basic needs. Also it uses a
callback driven approach like most other languages do, while our approach uses the
concept of fluents. Additionally, our approach is seemlessly integrated into Python
through macros, whereas PYROBOTS is implemented as an extra layer on top of
Python.

ROS commander (ROSCo) Author: Dustin AUGSTEN

ROSco [Nguyen et al., 2013] is, unlike the previous introduced works, not a domain-
specific language but builds upon a state machine concept. The idea is to allow
users the rapid creation and usage of behaviours, i.e. opening a drawer, in form
of hierarchical finite state machines by using a graphical user interface. Created
behaviours can then be used in any environment by just a few simple adjustments.
That way a robot can be easily taught to turn the lights off at any place, merely the
location of the light switch needs to be adjusted. Similar to our work is that ROSCo
is offering an easy to use interface to create, or code in case of PyCRAM, programs,
however, these programs are very limited in their logic and are just working off
states to fulfill a task while programs coded using PyCRAM can be combined with
any algorithms to create smart programs that do not need adjustments at all in new
environments if done correctly.

Tell me Dave Author: Dustin AUGSTEN

Tell me Dave [Misra et al., 2016] is not another toolbox for writing robot software
easier but an approach to have the robot act and fulfill tasks on natural language.
This is similar to the designator concept of CRAM and PyCRAM as it uses natural
language in form of symbolic description. What is so difficult is that the robot must
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ground the task described in natural language for the given environment. For ex-
ample even for a simple command like "boil water" there are several possibilities to
achieve the goal. The robot could use a an electric kettle or the stove and a pot to
heat the water. The difference to PyCRAM is that [Misra et al., 2016] were trying to
find an algorithm for Tell me Dave that will always make the right choice depending
on the environment while PyCRAM is returning a solution out of possible infinite
ones. That solution can be used or discarded by requesting the next one which is up
to the programmer.

1.3 Contributions

The work presented in this thesis introduces a number of libraries and tools for the
easier creation of high-level robot control programs that perform more robust, reli-
able and flexible in domestic environments.

The contributions of the work presented in this thesis are the following:

1. The PyCRAM Plan Language, an extension of the Python programming lan-
guage to support the developer implement high-level reactive and concurrent
robot control programs. The Plan Language features parallelization and mon-
itoring of competing processes, integration of sensor input and synchroniza-
tion, error handling mechanisms and concurrent execution methods.

2. Designators, a way of symbolically describing plan parameters such as mo-
tions, locations or objects.

3. Process Modules, a possibility for abstracting away the robot’s hardware to
implement robot independent programs. A program can be implemented very
generally and thus only the process modules for the different types of robots
need to be implemented for the program to work on any other robot.

While these concepts are not completely new as they were already introduced in
CRAM [Mösenlechner, 2016], they are completely reimplemented in Python which is
more used and accepted in the robotic community than the Lisp language CRAM is
relying on. As Lisp and Python are conceptually and implementation-wise very dif-
ferent programming languages, reimplementing CRAM’s features was a challenge,
because Python does on the one hand have limitations compared to Lisp but on the
other hand also does have certain advantages.

PyCRAM is available at https://gitlab.informatik.uni-bremen.de/pycram.

1.4 Reader’s Guide

Chapter 2

In this chapter all the foundations that are needed in order to understand this thesis
are explained such as CRAM, which serves as model for PyCRAM, or MacroPy,
which is especially important to implement most of PyCRAM’s features.
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Chapter 3

This chapter explains the actual implementation of PyCRAM in detail which consists
of three parts: the domain-specific-programming language namely the PyCRAM
Plan Language, designators which are used to symbolically describe parameters and
process modules which communicate with the robot’s hardware.

Chapter 4

In this part of the thesis an example application is presented and explained showing
some results of the implementation of PyCRAM and how to use it. This chapter does
also include a part on how to set up the working environment for PyCRAM as it is
based on Python 3 while the default support for tools in the robotic community is
for Python 2.

Chapter 5

Finally, in chapter 5, the results and findings we learned during the implementation
of PyCRAM and its sample application are collected and summarized to discuss and
answer our initial research question.
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Chapter 2

Foundations

This chapter aims to explain all theoretical foundations that are needed in order
to understand this thesis. There are three main subjects one should know about:
Robotics, CRAM and Python. These main subjects are divided into several subsec-
tions. These subsections include further information about the concepts, interfaces
and modules that were used to create the work presented in this thesis.

2.1 Robotics Author: Dustin AUGSTEN

Robotics is the domain this work was created for in the first place which is why it
is so important to understand what robotics is all about and why it has become so
indispensable for us. Robotics is a branch of engineering and science and is om-
nipresent in today’s society: whether in the production hall of a car manufacturer
or, also often described as "bot" or "crawler", a computer program which is specifi-
cally collecting information and evaluating them. Robots are supposed to help hu-
man or ease and fasten their daily work, however, with no less efficiency or preci-
sion. In modern medicine, for example, robots can help a surgeon during a compli-
cated surgery on the brain [Weinstein et al., 2007] or can give back a human without
hands the ability to grasp things by using an artificial replacement [Light and Chap-
pell, 2000]. Of course, these are just a few examples and there are many more uses
for robots. But for robots to function and to know what they are supposed to do
there are often operating systems and computer programs running on their hard-
ware these days. These programs can become big really fast and thus confusing and
complicated for the developers, hence, the work presented here deals only with a
part of computer science in robotics and is demonstrating an approach to counter
these problems by using PyCRAM, a software framework. While this work is not
limited to the use of ROS and PR2, which are introduced below, in order to function,
these were used to show and test this application.

2.1.1 ROS Author: Andy AUGSTEN

ROS stands for "Robot Operating System" and is a framework which was created
for writing independent robot software [Quigley et al., 2009]. As mentioned above
software can become complicated and confusing, especially with all the tasks robots
are supposed to fulfill these days. ROS was not only created to provide an robot in-
dependent platform but also to help developers create complex software with more
ease as ROS provides a huge list of useful tools and libraries. This means for a de-
veloper, for example, that the interprocess communication will not have to be coded
for the robot every time a different platform is used, or to be coded at all since there
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might already be a ROS package providing the desired function, so instead ROS
can just be used to implement communication between the multitude of processes
that run on a mobile manipulation robot. And since the work of the developer will
be platform independent other developers will be able to build upon the previous
made work to save time and effort. ROS supports easy sharing of work between
different robotics groups through its package sharing tools so that an increase in the
work flow is achieved to provide high quality products as every group might be an
expert on another field like navigation or digital image processing. Moreover does
ROS provide a modular design, which means that one can pick which parts of ROS
are actually required for the project and which parts not, or simply should be im-
plemented from scratch. ROS provides a few thousand packages with a large scale
of application range and on top of that a huge user community with lots of experts
[ROS.org |Is ROS For Me?]. Both can help build a professional software.

While there are many useful features to ROS, there a few core parts among them
that were used in this work, namely: "Nodes", "Topics", "Messages", "actionlib" and
"rospy".

Nodes

In ROS a node is a process performing computation. Nodes can communicate with
each other, for example, by using topics. Usually a robot control system is comprised
of many nodes each of which is responsible for a particular computational process
of the robot. One node could be controlling the robot’s wheel motors and yet an-
other performs path planning or localization. The benefits of nodes are simple yet
effective. Using nodes can help find software crashes easier, since each node is re-
sponsible for a certain part of the robot, a system failure or crash can be traced back
to the appropriate node to find and solve the error. Also, nodes give the system a
better overview and reduce code complexity.

Topics

Topics are buses used by nodes to exchange messages. A node can subscribe or
publish to a topic to receive or send data. If a node needs certain information from
another node it will subscribe to the relevant topic that the node providing the in-
formation is publishing to. A topic can have multiple subscribers and publishers.

Messages

Messages are transferred over topics by nodes for communication between these.
They are data structures consisting of fields of primitive data types and arrays of
these primitive types, such as integer, floating points, boolean etc, and can have arbi-
trarily nested structures and arrays. The messages mainly used by other ROS pack-
ages are included in the common_msgs package as are the actionlib_msgs for actions,
diagnostic_msgs for diagnostics, geometry_msgs for geometric primitives, nav_msgs for
robot navigation and sensor_msgs for communication with common sensors.

actionlib

The actionlib library provides an interface for preemptable tasks [actionlib - ROS
Wiki]. For example, moving or performing a perception task. Once a message is
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sent to a topic the robot will react to that message, for example, by moving. In order
to stop this action the user would have to send another message to the topic with
appropriate data. While this can be complicated, the actionlib provides many useful
tools to simplify these tasks. The user is able to stop the action of the robot with
a single command or make the software wait for the current action to finish before
continuing.

rospy

rospy is a client library for python programmers to interact with ROS topics, services
and parameters [rospy - ROS Wiki]. It implements many useful tools to simplyfy and
speed up implementation of one’s own code.

2.1.2 PR2 Author: Dustin AUGSTEN

The PR2, or Personal Robot 2, which is shown in Figure 2.1 (p. 10), is a humanoid
robot made by Willow Garage. It can navigate and manipulate in human environ-
ment and was designed for robot researchers [Overview |Willow Garage].

The idea is to one day have robots help us with our daily duty like doing the laun-
dry, cooking or serving food. This does not have to be limited to personal use only
but can be extended to restaurants, supermarkets etc. The goal of the ideal robot
supporting us in every situation may still seem far away but for this purpose robots
like the PR2 were invented because using the PR2 one can easily develop and test
new robot applications and reproduce certain behaviors in our actual world.

In order to manipulate objects the PR2 uses its arms which consists of 3 parts: the
actual arm, a wrist and a gripper. These can be seen in Figure 2.3 (p. 10). Each part
can be controlled using ROS, for example, by sending messages to the correspond-
ing topics. For example one can send a message containing data for the shoulder or
upper arm joints to the pr2 arm topic in ROS in order to move the shoulder or the
upper arm.

Moreover, quite a few sensors are included like several cameras, a laser scanner,
pressure sensors, etc. Figure 2.2 (p. 10) shows the sensors. For this work, however,
only the laser scanner was needed for navigation as the PR2 has mainly been used
for testing and demonstration purpose only and is just one out of many possible
robots PyCRAM can run on.

As seen in Figure 2.3 (p. 10), the PR2 does have a omni directional base with four
wheels that can run at a speed of one meter per second in order to move around
[Hardware Specs |Willow Garage].

The PR2 is supported by a community of 34 institution in 12 countries like several
universities [Join the Community |Willow Garage], for example the "‘University of Bre-
men", which benefits from its years of experience in robotics. Facilities can share
their work and reproduce results of other PR2 users enabling authentic validation
and steady progress as the wheel does not have to be reinvented every time.
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FIGURE 2.1: PR2 front and back view.

FIGURE 2.2: Some PR2 sensors.

FIGURE 2.3: PR2 arm and the omni directional base.
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2.2 CRAM Author: Andy AUGSTEN

CRAM means "Cognitive Robot Abstract Machine" and is a framework created to
help implementing cognitive high-level robot control programs [Mösenlechner, 2016].
CRAM comes with a lot of useful tools and libraries including but not limited to the
plan language, symbolic plan parametrization and process modules. While there are
some parts implemented in C/C++ the core packages of CRAM are implemented in
Common Lisp because it comes along with a useful macro system and a functional
programming paradigm, thus it is really flexible. As the work presented in this the-
sis, as the name PyCRAM already suggests, was modeled on CRAM, there are many
similarities. PyCRAM implements the named features of CRAM in its own but sim-
ilar way. This part of the chapter is further explaining the main ideas of the plan
language, symbolic plan parametrization and process modules which were imple-
mented in PyCRAM as well.

2.2.1 Plan Language Author: Andy AUGSTEN

The plan language of CRAM implements many macros and functions on top of its
base programming language Common Lisp to support the programmer create useful
programs with multiple concurrent actions for robots. It is based on Drew McDer-
mott’s Reactive Plan Language (RPL) [McDermott, 1991] which unlike the CRAM
Plan Language only simulates concurrency by shuffling the interpretation order of
expressions randomly. Programs implemented using the CRAM Plan Language on
the other hand make use of the operating system’s native multithreading imple-
mentation thus enabling actual concurrency and allowing the use of all processors
on multi-core CPUs [Mösenlechner, 2016, p. 23]. The concepts of the language that
were also implemented in PyCRAM are fluents and the functions seq, par, pursue,
try-all, try-in-order and failure-handling, which are described next.

Fluents

Fluents are proxy-objects that hold a value and provide a notification mechanism
[Mösenlechner, 2016, pp. 35–45]. Most libraries use callbacks to handle and react to
asynchronous input, which requires complex synchronization mechanisms. Fluents,
however, are implemented in a different way, making them thread safe and easy
to use in order to add reactivity to control programs running on multiple threads.
In addition, fluents can be combined to fluent networks, which are fluents them-
selves, and allow complex expressions and conditions. Some useful functions that
come along with fluents are (wait-for fluent), (whenever fluent) and (pulsed

fluent), with fluent being the variable name of the fluent.

(pulsed fluent): This will return a fluent containing the value nil or not nilwhen-
ever the value of the fluent has been changed or pulsed. It can be used in combina-
tion with other expressions to create useful conditions.

(wait-for fluent): The thread executing this expression blocks if the value of the
fluent is nil (in Lisp this is equivalent to False in Python) and waits for it to become
not nil before continuing. This can also be used in combination with (pulsed

fluent) like (wait-for (pulsed fluent)) in order to block until the value of the
fluent has changed or the fluent has been pulsed.
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(whenever fluent): The body is executed in a never ending loop whenever the
value of the fluent is not nil. If the variable is nil or becomes nil, whenever blocks
and waits for it to become not nil before continuing again. Like already mentioned,
whenever is like a never-ending loop which means it will not stop unless it is can-
celed by a return statement inside its body. Just like (wait-for fluent) it can also
be combined with (pulsed fluent) in order to make the body execute only when-
ever the fluents value has changed.

Fluent networks:

Fluent networks are fluents created by combining fluents. When a fluent that is part
of a fluent network updates its value the fluent network itself will also update its
value. Therefore the most important math operators were overloaded in CRAM and
PyCRAM and in addition the operators AND, OR and NOT were implemented return-
ing a fluent containing nil or T as value instead of the actual value. If that is not
enough the programmer can create user defined fluent operators using fl-funcall.

For example (> fl 20) will create a fluent network containing the value T or nil.
Assuming the value of fl is 10 the value of the network will be nil. Now whenever
the the value of fl is updated, the value of the network will be changed as well, mak-
ing it easier to work with constructs like (wait-for fluent) because one could sim-
ply use (wait-for (> fl 20)). (wait-for (make-fluent :value ((value fl)>

20))) for example would not work as the value of the newly created fluent would
never change which is why it is so important to have fluent networks.

Fluent pulses:

In order to use wait-for and whenever in combination on value change, pulses are
an important key feature to fluents. Pulse fluents are special fluents that hold the
value T or nil and change only when the value of the fluent they were created from
has changed or they were read from. They change their value on read depending on
the selected missed pulse handling to be present once, always and never.

once: The pulse fluents value becomes true only once. As soon as its read from the
value will become nil. The value will be true initially if the fluent the pulse fluent is
created from has been pulsed before creation.

always: For each pulse the dependent fluent has been pulsed the pulse fluent can be
read from without changing its value to nil.

never: Same as once only that the initial value will always be nil.

Sequential execution

seq: Basically this is identical to Common Lisp’s progn and will execute the given
forms sequentially. Succeeds if all child forms of seq succeed and fails otherwise.

try-in-order: This will execute all child forms sequentially and only fail if all have
failed and then rethrow the errors or succeed when one succeeds.
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Parallel execution

par: This will run all child forms in parallel. If one child form fails for example by
throwing an exception par will also fail and rethrow the respective condition object.
Accordingly par will only succeed if all its child forms have succeeded thus it will
only terminate when all its child forms have finished.

pursue: This functions just like par but unlike par it will terminate in any case fail
or succeed of any child. If one child fails pursue will fail and vice versa for the suc-
cess of one child. All other child forms are evaporated as soon as pursue terminates.
This can be used for example to monitor some state and finish once the goal state has
been reached in one thread while the second thread performs an action to achieve
this goal state.

(pursue

(wait-for goal-reached-fluent)

(loop do

...)) ; slowly approach goal

try-all: This will also execute all child forms in parallel and only fail if all have
failed and then rethrow the errors or succeed when one succeeds.

Error handling

Just like try-catch constructs in other programming languages like Java, the expres-
sion with-failure-handling allows the programmer to execute failure handling
code in case of exceptions with the addition of retrying the main block (try-block
in Java).

2.2.2 Symbolic Plan Parametrization Author: Dustin AUGSTEN

When writing robot control programs it would be most convenient when the pro-
grammer can easily specify entities such as motions, locations or even objects by
naming these and their properties. CRAM implements designators which are Com-
mon Lisp objects describing parameters in a compact way using key-value pairs of
symbols [Mösenlechner, 2016, pp. 74–85]. For example the programmer could have
the robot grasp for a red cup on the table using the following set of designators:

(( motion grasping) (object ((type cup) (color red) (at

location-on-table))))

where location-on-table is bound to a location designator with the properties:

((on counter-top) (name kitchen-table))

A designator is not limited to a single solution but can in fact have multiple solu-
tions. The location-on-table designator, for example, can have infinite solutions,
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as there theoretically are infinite different coordinates on a table, despite the table be-
ing limited by size. However, each additional key-value pair does add a constraint
that limits the number of solutions. While (type cup) can reference to any cup in
the world, ((type cup)(at location-on-table)) limits the number of cups to the
cups that are available on the given at constraint.

As of now, CRAM’s implementation does support three different designator classes:
motion designators, object designators and location designators. Motion designators
are meant as input for process modules (see chapter 2.2.3), object designators are
describing objects on a symbolic level and location designators describe locations
under given constraints. All three types derive from the same class, thus share some
common properties, but differ in the way they are handled in the system.

2.2.3 Process Modules Author: Dustin AUGSTEN

CRAM comes along with process modules. The idea of process modules is to ab-
stract away from different robot specifications [Mösenlechner, 2016, pp. 85–95]. For
example if a programmer had access to two different robots, one having one arm
and the other one having two arms, (s)he would usually have to adjust the high
level code for each robot for any given task, i.e. making popcorn. Process modules,
however, provide a robot-independent interface by which the programmer does not
need to worry about different controllers. It does not matter whether a robot has
wheels or artificial legs in order to navigate through the world: as long as it can do
the task in any way and there is a module providing the desired functionality, it will
work out of the box using process modules. A module providing this functionality
could, for example, accept a motion designator with the following description:

((type navigation) (goal p0))

where p0 is a location designator.

The input for process modules must always be motion designators. In addition pro-
cess modules provide a status fluent which can be queried to learn the current sta-
tus of the module: running, free, waiting and whether the last action failed or suc-
ceeded.

Process modules can be executed synchronously or asynchronously. A synchronous
execution will block the module for further executions until the current action has
finished. This is especially useful when the robot cannot do multiple tasks at once
for example moving to location p0 and moving to location p1. These actions need to
be performed sequentially. Since the synchronous execution blocks the module un-
til it has finished the navigation requests can be called simultaneously nonetheless.
While synchronous execution of process modules block until the current action has
finished there are also asynchronous executions which will not block. This is impor-
tant as there might be situations in which the robot can perform multiple tasks at
once to increase performance or for other reasons but would be blocked otherwise,
i.e. opening a cupboard with one arm and lifting a cup with another arm to place
it into the cupboard. Without asynchronous process module execution this would
take unnecessarily longer.
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2.3 Python Author: Andy AUGSTEN

Python is a high-level programming language that promotes an easy-to-read pro-
gramming style, such as structuring blocks by indenting rather than braces. Because
of its clear syntax, Python is easy to learn. Various programming paradigms such as
object-oriented but also functional programming are supported. In addition, Python
offers dynamic typing, which is why Python is often used as a scripting language.
Python is commonly interpreted which means that the program source code is not
translated by a compiler into an executable file but is read in, analyzed and executed
by an interpreter. The translation thus takes place at run-time of the program [San-
ner, 1999].

Python is very popular because it is freely available for most major operating sys-
tems and is included in most standard Linux distributions. There is also an interface
to integrate Python into web servers. There is a large selection of scientific libraries
available such as NumPy for numeric calculations. Today, Python is one of the most
popular programming languages [Frederickson, 2018].

2.3.1 MacroPy Author: Dustin AUGSTEN

In software development, a macro is a sequence of statements or declarations com-
bined under a certain identifier (macro name), which can easily be executed by call-
ing it. This allows the execution of frequent single statements in several places in
the program. The difference to a function that can be passed parameters and possi-
bly other functions to be executed, is that you can pass even larger sections of code,
which are then inserted in the macro and executed as a whole [Barski, 2011, pp. 339–
353].

Unlike Lisp, for example, Python has no official support for macros. The remedy is
a library called MacroPy.

"MacroPy was initially created as a final project for the MIT class 6.945: Adven-
tures in Advanced Symbolic Programming, taught by Gerald Jay Sussman and Pavel
Panchekha. Inspiration was taken from project such as Scala Macros, Karnickel and
Pyxl." [Haoyi, 2013]

To realize macros, MacroPy uses import hooks. As seen in Figure 2.4 (p. 16), the
interpreter normally works by transforming the source code into an abstract syntax
tree, then compiling it into bytecode at runtime and then executing it. MacroPy inter-
cepts an import, also converts the source code into an abstract syntax tree but trans-
forms it before compiling and proceeding with the loading of the module. Transform
means to search for macros and replace them with their definitions. It is not possible
to use macros in the command line or in a file that is executed directly, because the
source code in this case does not run through the import hook. So one has to cre-
ate another – so-called bootstrap file – which imports the source code as a module
[30,000ft Overview – MacroPy3 1.1.0 documentation].
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FIGURE 2.4: MacroPy intercepts an import to be able to transform the
abstract syntax tree.
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Chapter 3

Implementation

3.1 The PyCRAM Software Architecture Author: Dustin AUGSTEN

Allowing robots to perform complex actions, such as, for example, cooking or tidy-
ing up in a dynamic environment, such as a human household, is a whole new chal-
lenge for robots compared to industrial applications. While industrial robots per-
form the same tasks over and over again in a static environment, robots in house-
holds must make decisions based on the configuration of the environment.

PyCRAM is a collection of Python modules that can be used to implement complex
tasks such as cooking or tidying up. It includes a domain-specific programming lan-
guage, the PyCRAM Plan Language, and supports so-called designators (symbolic
description of plan parameterization). Plans are defined using the PyCRAM Plan
Language. Plan parameters are defined using designators. This makes it possible to
abstract from the actual hardware of the robot. Process modules are used to com-
municate with the hardware. These receive commands as designators, which they
resolve to generate hardware-specific commands that are then sent to the different
components of the robot as can be seen in Figure 3.1 (p. 18).

The programming language we used to implement such a system is Python because
it is widely used, easy to learn, and one of the most popular programming lan-
guages. The MacroPy library makes Python very flexible in designing a domain-
specific programming language.

In this chapter we discuss the implementation of the core components of PyCRAM,
namely, the PyCRAM Plan Language, symbolic plan parameterization by designa-
tors and process modules.
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FIGURE 3.1: Plans are defined using the PyCRAM Plan Language.
Their parameters are defined by designators, which are resolved by
process modules. Process modules communicate with the robot’s
hardware to execute the plan. The robot gives feedback to the ap-

plication.

3.2 The PyCRAM Plan Language Author: Andy AUGSTEN

The PyCRAM Plan Language is based on Lorenz Mösenlechner’s CRAM Plan Lan-
guage [Mösenlechner, 2016]. While CRAM is implemented in Lisp, PyCRAM is im-
plemented in Python 3. CRAM and PyCRAM both are languages for implementing
reactive control programs for robots.

The Plan Language supports the developer in the implementation of plans, which
are reactive and concurrent control programs for mobile robots. The Plan Language
includes support for parallelization and monitoring of competing processes as well
as integration of sensor input and synchronization.

3.2.1 Language Syntax Author: Andy AUGSTEN

The PyCRAM Plan Language is implemented as a domain-specific language in Python.
This makes the syntax similar to that of Python, and the full standard library and all
the features that Python provides are also available in PyCRAM programs.

The reason we chose Python is its great popularity. The (slightly modified) MacroPy
library1 used for and integrated into PyCRAM offers a very strong macro system,

1https://github.com/daugsten93/macropy/. Accessed 01/14/2019.
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which is very similar to that of Lisp and makes Python very flexible. The difference
to macro systems like the one provided by C/C++ is that it does not build on a sim-
ple string substitution, so it can handle not only data but also whole code.

To understand the source code presented in this paper, basic knowledge in Python
is required. The implementation of macros may not be easily readable even by expe-
rienced Python programmers who have not yet dealt with MacroPy. Let us briefly
discuss MacroPy in the following paragraphs.

In MacroPy, a macro is defined as a function and annotated as one of three possible
macro types. Here we distinguish between expressions, blocks and decorators. For
our work, only block macros are relevant. When called, parameters can be passed
to a macro as well as to a function, but above all entire code blocks can be passed,
too. The macro can then arbitrarily transform such a code block, which is passed as
a tree in the form of an AST (Abstract Syntax Tree) object, before execution. So the
difference between a macro and a function is that you can control the execution of
the code, which is why macros are so useful when you want to implement a domain-
specific language.

For example, you could define a macro loop that executes a block of code x times,
passing x as a parameter. The following snippet, stored in the file print_example.py,
would then execute a print statement 5 times.

from loop_macro_module import macros , loop

with loop (5):

print('Hello ,␣world!')

In the above snippet, loop_macro_module is the module that provides the macro
loop. In the first line we import the macros object of the respective module and then
the loop macro itself. Then we use the macro to execute the code block it returns.
That code block is represented in the next snippet:

for _ in range (5):

print('Hello ,␣world!')

Macros cannot be used in the same module in which they were defined. Instead, the
file that uses the macro must be imported as a module in a so-called bootstrap file,
which then has to be executed.

import macropy.activate

import print_example

To understand how the macro is implemented, we first have to learn about the two
macros hq and ast_literal from the MacroPy library. The macro hq generates a



20 Chapter 3. Implementation

tree from Python code. Alternatively, it is also possible to build a tree manually, but
this requires good understanding of the Abstract Syntax Tree, which Python code is
based on. The macro ast_literal, in turn, generates Python code from a tree. We
need this macro inside the hq macro because we pass Python code to the hq macro,
but the code block and the parameters passed to our macro are passed as a tree.

Now this is our macro implementation, stored in a file named loop_macro_module.py:

from macropy.core.macros import Macros

from macropy.core.hquotes import macros , hq

from macropy.core.quotes import macros , ast_literal

macros = Macros ()

@macros.block

def loop(tree , args , **kw):

with hq as new_tree:

for _ in range(ast_literal[args [0]]):

ast_literal[tree]

return new_tree

The line macros = Macros() marks the module as one that provides macros. We
use the block method of the macros object to declare our defined function loop as
a block macro. The tree parameter is the code block passed to our macro as a tree.
The parameter args contains all passed parameters as a list, including our x, which
is the number of tries to execute the loop. The macro hq places the generated tree in
the new_tree variable we specify. Our macro then returns this tree.

The syntax of the two macros hq and ast_literal differs because hq is a block macro
like our loop macro is one, too, and ast_literal is an expression macro: hq uses the
"with" syntax, whereas ast_literal expects the tree to be passed in square brackets.

3.2.2 Fluents Author: Andy AUGSTEN

Fluents are synchronized proxy objects, which are used as variables with changing
values. They allow threads to watch them and wait for specific changes as well
as to change their value. Fluents are very powerful when it comes to implementing
reactivity. The base idea of fluents goes back to the fluent calculus [Thielscher, 1998].

Fluents in PyCRAM

To create a fluent, its constructor must be called. This can be given a value and a
name as a parameter. If no value is passed, this corresponds to the value None. If no
name is passed, a random string is generated.

f = Fluent (1)
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This binds the variable f to a newly created fluent with the value 1. The value can
be read by the function get_value and changed by the function set_value.

f.get_value () # returns 1

f.set_value (2) # sets the value to 2

f.get_value () # returns 2

In PyCRAM, control programs communicate with a robot through a middleware
which performs an asynchronous callback for each new sensor input. In this call-
back, the value of a fluent is changed and the control program is executed in parallel.
For example, our program can receive any change by moving the robot as a callback
and update the fluent containing the robot’s location.

By calling the function wait_for, the program is able to block the execution and
wait for the value of a fluent to become not None. For example, one can wait for a
gool_reached fluent to become true.

goal_reached.wait_for () # blocks if the value is None , no

effect otherwise

We can combine Fluents to create a so-called fluent network. A fluent network is
itself a fluent underlying a function that determines its value. The special feature
is that the value is always re-evaluated and can therefore change if the underlying
function, for example, takes into account the value of another fluent. A trivial ex-
ample is the following code, which waits for the value of a fluent divided by 3 to
become less than 1.

(f / 3 < 1).wait_for ()

For this purpose, the comparison functions <, <=, ==, !=, > and >= as well as the arith-
metic functions +, -, * and / are overloaded so that they return a fluent network if
one of the two parameters is a fluent. In addition, the functions IS and IS_NOT are
defined for the comparison functions is and is not, which cannot be overloaded.
The same applies to the logical operators and, or and not, here the functions AND, OR
and NOT have been defined accordingly.

The value of the generated fluent network is None as long as the condition is not met,
otherwise True. The value of an unfulfilled condition is therefore None, not False,
because wait_for assumes this (block the current thread as long as the value is None).

Fluent networks can also be created using programmer’s own functions by passing
these instead of a value when generating the fluent. So, instead of fluent_net = f

/ 3, the following would also be possible:

fluent_net = Fluent(lambda: f.get_value () / 3)
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In this case, however, the fluent network cannot know if the value of another fluent
was used and hence the fluent network should be added to it as a child. This causes
the condition underlying the invocation of the wait_for function on the network to
be notified when the value of the parent fluent, and thus the value of the network,
changes.

f.add_child(fluent_net)

(fluent_net < 1).wait_for ()

To always execute a code block when the value of a fluent changes and is not None,
the whenever macro can be used. It is to be understood as a loop executing wait_for

on a fluent followed by the code block in each pass. The following example illus-
trates how to call the move function for each new location stored in the fluent loc.

loc = Fluent ()

with whenever(loc):

move(loc.get_value ())

For this purpose there can be a function update_location, which is a callback that
is called every time a new goal pose is entered by a robot user.

def update_location(location):

loc.set_value(location)

Sometimes you want to wait for a value to update, whether it is a None or not. To do
this, call the pulsed function, which returns a fluent, the value of which changes to
True as soon as the value of the parent fluent changes.

with whenever(loc.pulsed ()):

move(loc.get_value ())

A fluent generated by calling the pulsed function also changes its value to True

when the pulse function is called on the parent fluent. This can be useful for releas-
ing the wait_for block without the value changing.

One problem that can occur when using whenever, is that the value of a fluent may
change again while the code block is still executing. To counter this, the function
pulsed can be given a parameter of the type Behavior (enumeration from the fluent
module) to indicate how whenever should handle missed pulses. Possible values are:
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1. Behavior.NEVER: Missed impulses are ignored.

2. Behavior.ONCE: The code block is executed one more time, no matter how
many missed impulses have occurred.

3. Behavior.ALWAYS: The code block is executed again for each missed pulse.

with whenever(loc.pulsed(Behavior.ONCE)):

# execute once more if missed pulses occur

move(loc.get_value ())

Implementation

Fluents are implemented as a class. When the constructor is called, a Condition ob-
ject [Hoare, 1974] and a Lock object [Dijkstra, 2001] are created and stored in the
variables _cv (Condition Variable) and _mutex. The Condition object is used to in-
form the function wait_for if the function pulse was called. The Lock object is
for synchronization. The variables _pulses, _children and _handle_missed are as-
signed default values. _pulses is there for the macro whenver to know how often
the pulse function was called while the code block was still executing. _children

serves the fluent networks, here a parent fluent deposits his children in order to be
able to call the function pulse on them if it was also called on itself. _handle_missed
is again for the macro whenever to know how to handle missed calls. The parame-
ters value and name passed to the constructor are stored in the variables _value and
name. If the parameter name is not given or if it corresponds to None, a random string
is generated.

Variable names beginning with "_" indicate variables that are not directly accessible.
This has become a convention in Python because there are no access modifiers, such
as there are in languages like Java.

class Fluent:

def __init__(self , value = None , name = None):

self._cv = Condition ()

self._mutex = Lock()

self._pulses = 0

self._children = []

self._handle_missed = Behavior.NEVER

self._value = value

if name is not None:

self.name = name

else:

self.name = str(uuid4 ())

There are getter and setter functions for the value. The reason for this is firstly that
we can use the Lock object to grant thread security, and second that if the value is a
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function we can call it and return its return value.

def get_value(self):

with self._mutex:

if callable(self._value):

return self._value ()

return self._value

def set_value(self , value):

with self._mutex:

self._value = value

self.pulse ()

The function pulse increases the pulse counter for each child object, which are gen-
erated inter alia by calling the function pulsed, and then calls the same function on
it. Then the condition object is informed of a possible change. There may be a change
in the children generated by the pulsed function, which change their value to True

if the impulse counter is not 0, and after a call to the set_value function, which in
turn calls pulse.

def pulse(self):

for child in self._children:

with child._mutex:

child._pulses += 1

child.pulse ()

with self._cv:

self._cv.notify ()

pulsed creates a new Fluent object and sets a function that returns True if the pulse
counter is not 0 and otherwise None, as its value. How the macro should handle
missed impulses is passed to the function as a parameter. The default is 2, which
is the same as Behavior.ONCE. The value of the parameter is stored in the instance
variable _handle_missed. Then the new fluent is added to the current fluent as a
child so that an impulse on the parent fluent can also affect the child fluent. The
Fluent object created in this way is then returned.
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def pulsed(self , handle_missed = 2):

fluent = Fluent ()

def value ():

if fluent._pulses != 0:

return True

else:

return None

fluent.set_value(value)

fluent._handle_missed = handle_missed

self.add_child(fluent)

return fluent

For the different comparison operators that are overridden by the Fluent class, a
helper function _compare has been defined. This expects the operator to be used and
the object with which the Fluent object is to be compared to be passed as parameters.
A new Fluent object is created. The function then checks whether the second object
is also a fluent, because in this case get_value must be called on both objects in
order to work with their values. In any case, a function that returns True or None is
defined and set as the value of the new fluent. In addition, the new object is added to
the parent fluent or the two parent fluents from which it originated as child fluent. It
will then be returned. The following is an implementation of the operators < (__lt__
) and <= (__leq__) is shown.
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def _compare(self , operator , other):

fluent = Fluent ()

if type(other) == Fluent:

def value ():

if operator(self.get_value (), other.get_value ()):

return True

else:

return None

other.add_child(fluent)

else:

def value ():

if operator(self.get_value (), other):

return True

else:

return None

self.add_child(fluent)

fluent.set_value(value)

return fluent

def __lt__(self , other):

return self._compare(operator.lt , other)

def __leq__(self , other):

return self._compare(operator.leq , other)

The other comparison operators >, >=, ==, !=, is and is not are defined in a similar
fashion. is and is not, however, cannot be overloaded and hence are represented
by the functions IS and IS_NOT.

def IS(self , other):

return self._compare(operator.is_ , other)

def IS_NOT(self , other):

return self._compare(operator.is_not , other)

It is identical for the functions AND and OR, which represent the logical operators and
and or, but they have to do without a helper function because these two operators
do not exist as functions. The implementation of AND is shown below.
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def AND(self , other):

fluent = Fluent ()

if type(other) == Fluent:

def value ():

if self.get_value () and other.get_value ():

return True

else:

return None

other.add_child(fluent)

else:

def value ():

if self.get_value () and other:

return True

else:

return None

self.add_child(fluent)

fluent.set_value(value)

return fluent

The NOT function is also very similar, but there is no second operand.

def NOT(self):

def value ():

if not self.get_value ():

return True

else:

return None

fluent = Fluent(value)

self.add_child(fluent)

return fluent

The mathematical operators always have to overwrite two functions. The one func-
tion is called when the first operand is a fluent. The second operand can also be,
but does not necessarily have to be a fluent. The other function is called if the first
operand is not a fluent, but the second one is. Since very often the same thing is
done here, there is again a helper function, _math, for this purpose.
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def _math(self , operator , operand , other):

fluent = Fluent ()

if type(operand) == Fluent:

if type(other) == Fluent:

value = lambda: operator(operand.get_value (), other

.get_value ())

other.add_child(fluent)

else:

value = lambda: operator(operand.get_value (), other

)

operand.add_child(fluent)

else:

value = lambda: operator(operand , other.get_value ())

other.add_child(fluent)

fluent.set_value(value)

return fluent

def __add__(self , other):

return self._math(operator.add , self , other)

def __radd__(self , other):

return self._math(operator.add , other , self)

def __sub__(self , other):

return self._math(operator.sub , self , other)

def __rsub__(self , other):

return self._math(operator.sub , other , self)

...

The function wait_for calls the function of the same name on the condition object
_cv and returns its return value. A lambda function is passed as predicate, which
returns True if the call of get_value does not return None. Here we are based on the
Lisp implementation, in which the value does not have to be None (or nil is Lisp),
because in Lisp this corresponds to the value False. Optionally, the function can be
given a parameter timeout.

def wait_for(self , timeout = None):

with self._cv:

return self._cv.wait_for(lambda: self.get_value () is

not None , timeout)

The whenever macro uses the function _block from the helper module, so to under-
stand whenever let us first look at _block. The function _block receives as parameter
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a tree and puts it into a new tree, in which the transferred tree is surrounded by a
condition. This way several statements are put in a block because otherwise they
can not always be nested (for example, within the macro par, which executes each
statement in its own thread).

def _block(tree):

with q as new_tree:

# Wrapping the tree into an if block which itself is a

statement that contains one or more statements.

# The condition is just True and therefor makes sure

that the wrapped statements get executed.

if True:

ast_literal[tree]

return new_tree

Behavior is a class that inherits from the Enum class and defines the three values
NEVER, ONCE and ALWAYS. These represent behaviors on how to deal with missed
pulses inside the whenever macro.

class Behavior(Enum):

NEVER = 1

ONCE = 2

ALWAYS = 3

whenever runs a while loop, within which the wait_for function is called on the
fluent passed as a parameter. Then the code block passed to the macro is executed.
The following code describes the logic for how to deal with missed impulses. If the
behavior for this is set to Behavior.NEVER, the pulse counter is set to 0 so that the
value of a fluent generated by calling the pulsed function is None again. Otherwise
the pulse counter is decremented, so the value remains True if this was greater than 1

and the code block is executed again. If the counter is greater than 1 and the behavior
is set to Behavior.ONCE, the counter is set to 1 so that the code block is executed only
once more.
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@macros.block

def whenever(tree , args , **kw):

with hq as new_tree:

_fluent = ast_literal[args [0]]

while True:

_fluent.wait_for ()

ast_literal[tree]

if _fluent._handle_missed == Behavior.NEVER:

with _fluent._mutex:

_fluent._pulses = 0 # Ignore missed pulses

else:

with _fluent._mutex:

_fluent._pulses -= 1

if _fluent._pulses > 1 and _fluent._handle_missed

== Behavior.ONCE:

_fluent._pulses = 1 # Execute body only once

more

return _block(new_tree)

3.2.3 PyCRAM Plan Language Expressions Author: Dustin AUGSTEN

The domain-specific language PyCRAM Plan Language, in addition to fluents, also
extends Python to include sequential and parallel execution macros with error han-
dling. This chapter discusses the different possibilities that PyCRAM offers for this
and their properties as well as the underlying implementation.

Sequential execution

Python code is actually always executed sequentially. What differentiates sequential
execution with PyCRAM is that it automatically catches errors and makes them eas-
ier to handle.

PyCRAM language statements for sequential execution are seq and try_in_order.

seq: All statements passed to the macro seq are executed one after the other. Like
all PyCRAM Plan Language expressions, this macro returns State.SUCCEEDED or
State.FAILED as fluent. It succeeds if all statements could be executed without er-
ror, otherwise it is considered as failed. If one instruction fails, the others will not
run. The current thread itself is not interrupted if an error occurs, it stays alive and
errors are stored as a list in a variable which can be given as optional parameter.

The following example first executes statement s1 and then statement s2. If an er-
ror occurs at the first instruction, the second one is no longer executed. The thread
would not be interrupted and the error would be stored in the list errors. The fluent
s would have the value State.FAILED or State.SUCCEEDED if both statements can be
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executed without error.

from pycram.language import macros

from pycram.language import seq

with seq(errors) as s:

s1

s2

try_in_order: Again, this macro executes all given statements sequentially, but it
succeeds if only a single statement succeeded and fails only if all statements have
failed. This also means that as soon as one statement succeeded, the others will not
be executed.

In the following example, statement s1 is executed first and statement s2 is executed
only if statement s1 has failed. If s2 also fails, then the fluent s has the value State.

FAILED, otherwise State.SUCCEEDED.

from pycram.language import try_in_order

with try_in_order(errors) as s:

s1

s2

Parallel execution

The parallel execution expressions offered by PyCRAM are based on the threading

module. The expressions make it possible to execute several statements in separate
threads without having to create, start and collect a thread for each statement.

Unlike the Lisp implementation, the other threads do not terminate when one has
completed successfully or failed because threads cannot be interrupted in Python.
This is also not desirable because a thread could currently be in a critical section
where a lock object is not resolved when the thread is interrupted, or because the
thread cannot clean up behind it to possibly recover occupied memory again. To
counteract this problem, it is possible to access the current status within the macro.
So each thread can know if the macro has done its job and then schedule properly.

Language statements for parallel execution are par, try_all and pursue.
par: The macro par executes each submitted statement in a separate thread and com-
pletes successfully if all statements could be executed without error, otherwise it will
fail.

The next example shows how the instructions s1 and s2 are executed at the same
time. If one of the two statements results in an error, the fluent s has the value State

.FAILED, otherwise State.SUCCEEDED.
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from pycram.language import par

with par(errors) as s:

s1

s2

If one wishes to execute the instructions s1 and s2 in one thread and only the in-
struction s3 in another thread, one must package the two individual instructions s1
and s2 into a block, which in turn is a single instruction. This is accomplished by
nesting the two statements in a condition.

with par(errors) as s:

if True:

s1

s2

s3

Alternatively, one could also use the macro seq for this purpose. However, as seq

throws no errors, these are not passed to par and thus not stored in errors in this
case.

with par(errors) as s:

with seq as state:

s1

s2

s3

If a thread goes through a loop and should interrupt it as soon as another thread has
failed, that is, if the value of the value has been set to State.FAILED, then this can
easily be queried on every run.

with par(errors) as s:

s1

while True:

if s.get_value () == State.FAILED:

break

s2

Since the status can only be State.SUCCEEDEDwhen all threads are terminated, within
the macro the fluent can only have the value None or State.FAILED. Hence in this
case it is also sufficient to check whether the value is not None.
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with par(errors) as s:

s1

while True:

if s.get_value ():

break

s2

try_all: This macro succeeds if any of the statements do and fails if all have failed.

In the following example, the statements s1 and s2 are executed in parallel. If one
of the two statements is successful, the fluent s has the value State.SUCCEEDED, oth-
erwise State.FAILED.

from pycram.language import try_all

with try_all(errors) as s:

s1

s2

pursue: The macro pursue succeeds if one of the statements succeeds and fails if one
of the statements does.

In this example, the instructions s1 and s2 are executed in parallel. If one completes
successfully, the fluent s has the value State.SUCCEEDED. If one of the instructions
fails, the value of the fluent is State.FAILED.

from pycram.language import pursue

with pursue(errors) as s:

s1

s2

pursue can be used to pursue two alternative goals and if one goal is reached, abort-
ing the other. This can be done, again, by checking the state.

Error handling

Sometimes it is desired that a code gets re-executed when an error occurs. For this
purpose, there is the macro failure_handling, which puts the passed code into a
retry function, which in turn can be called in the code itself, and calls it. If you
want to limit the number of possible attempts, you can pass this limit as parameter.
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The following example executes the code c up to 5 times if an error occurs during
execution.

from pycram.language import failure_handling

with failure_handling (5):

try:

c

except Exception as e:

retry ()

If passing a negative or no parameter at all, the number of attempts is unlimited and
the code is executed until there is no more error.

from pycram.language import failure_handling

with failure_handling ():

try:

c

except Exception as e:

retry ()

Implementation

The macros defined for sequential and parallel execution always return a fluent
whose value is of the type State. State is a class that inherits from Enum, and defines
the two values SUCCEEDED and FAILED.

class State(Enum):

SUCCEEDED = 1

FAILED = 2

To keep the code short and clean, we have defined some helper functions.

The function _init is used to initialize our macros. It will be given at least one
parameter and optionally a second one. The first parameter target is the variable in
which the state of the macro is stored. This is the variable that is after the "as" when
the macro is called as in with pursue(e)as s. This variable stores a new Fluent

object. Then a second variable _exceptions is created and assigned an empty list.
If the second parameter threads has the value True (default as this happens more
often), then another variable _threads, which again is assigned an empty list, is
created. All this is returned as an abstract syntax tree.
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def _init(target , threads = True):

with hq as tree:

ast_literal[target] = Fluent ()

_exceptions = []

if threads:

with q as temp_tree:

_threads = []

tree.append(temp_tree)

return tree

The _state function expects as the first parameter the variable storing the state and
optionally a new state as the second parameter. The variable is an object of the type
ast.Name with ast.Store as the expression context, because macros typically assign
a value to this variable. We have already assigned a fluent to the variable and now
want to access it in order to call the functions get_value and set_value on it. To
make this possible, we need to convert the object to a new object of type ast.Name

with ast.Load as the expression context. Then it is checked whether a second pa-
rameter is given. If not, then the current state should be returned. This is returned as
a tree by means of the macro q, so that the macros can process it more easily. If a sec-
ond parameter is given, its value is assigned to the variable, provided that no value
has been set before. Because the state of our macros is final, once set this should
not change. Also, the setting of the value does not happen here, but is returned as a
syntax tree and then executed by the macro itself.

def _state(target , state = None):

target_load = ast.Name(target.id, ast.Load())

if state is None:

return q[ast_literal[target_load ]. get_value ()]

with hq as tree:

if not ast_literal[target_load ]. get_value ():

ast_literal[target_load ]. set_value(state)

return tree

The function _exceptions receives as parameters the tree generated by the macro
and the list of arguments passed to the macro. If the number of arguments is greater
than 0 and thus a variable in which a list of all errors is to be stored is given, the
function generates a tree which assigns the value of the previously defined variable
_exceptions to it. The tree is attached to the tree created by the macro.
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def _exceptions(tree , args):

if len(args) > 0:

with hq as new_tree:

ast_literal[ast.Name(args [0].id, ast.Store ())] =

unhygienic[_exceptions]

tree.append(new_tree)

The next function is _thread. This one is only intended for the macros defined for
parallel execution and expects the tree generated by the macro as a parameter. The
function creates a subtree that creates a new Thread object. The function _func de-
fined in the macro is passed to the constructor of the Thread object. The object is
added to the list _threads and then the thread is started. The subtree is appended
to the tree created by the macro.

def _thread(tree):

with hq as new_tree:

_thread = Thread(target = unhygienic[_func ])

unhygienic[_threads ]. append(_thread)

_thread.start ()

tree.append(new_tree)

The last helper function _join is the counterpart to this. It also expects the tree gen-
erated by the macro as a parameter and creates a subtree that collects all the threads
stored in the list _threads. Then the subtree is attached to the transferred tree.

def _join(tree):

with hq as new_tree:

for _thread in unhygienic[_threads ]:

_thread.join()

tree.append(new_tree)

The macro seq generates a new tree by calling the function _init. For each statement
in the code passed as a tree, it is first checked whether no state has yet been set.
In this case the statement will be tried. If an error occurs, the state is set to State.

FAILED and the error is added to the list _exceptions. At the end the function _state

tries to set the state to State.SUCCEEDED, which only happens if no value has been
set before. By calling the helper function _exceptions the errors are assigned to the
passed parameter.
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@macros.block

def seq(tree , target , args , **kw):

new_tree = _init(target , False)

for statement in tree:

with hq as temp_tree:

if ast_literal[_state(target)] is None:

try:

ast_literal[statement]

except Exception as e:

ast_literal[_state(target , State.FAILED)]

unhygienic[_exceptions ]. append(e)

new_tree.append(temp_tree);

new_tree.append(_state(target , State.SUCCEEDED))

_exceptions(new_tree , args)

return _block(new_tree)

try_in_order is identical to seq, except that here the state is changed to State.

SUCCEEDED if an instruction was executed successfully. In the end, it is then logically
attempted to set the state to State.FAILED if it has not yet been assigned a value.

@macros.block

def try_in_order(tree , target , args , **kw):

new_tree = _init(target , False)

for statement in tree:

with hq as temp_tree:

if ast_literal[_state(target)] is None:

try:

ast_literal[statement]

ast_literal[_state(target , State.SUCCEEDED)]

except Exception as e:

unhygienic[_exceptions ]. append(e)

new_tree.append(temp_tree);

new_tree.append(_state(target , State.FAILED))

_exceptions(new_tree , args)

return _block(new_tree)

par behaves similarly to seq, but executing the statements here is wrapped in a func-
tion _func, and the helper function _thread is called to start a thread that performs
this function. After executing all statements, the _join function is called to wait for
all threads to terminate.
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@macros.block

def par(tree , target , args , **kw):

new_tree = _init(target)

for statement in tree:

with hq as temp_tree:

def _func ():

try:

ast_literal[statement]

except Exception as e:

ast_literal[_state(target , State.FAILED)]

unhygienic[_exceptions ]. append(e)

new_tree.append(temp_tree)

_thread(new_tree)

_join(new_tree)

new_tree.append(_state(target , State.SUCCEEDED))

_exceptions(new_tree , args)

return _block(new_tree)

try_all behaves to par as try_in_order does to seq. It is identical, but changes the
state to State.SUCCEEDED if a statement was executed successfully. At the end, the
state is set to State.FAILED if no value has been assigned previously.

@macros.block

def try_all(tree , target , args , **kw):

new_tree = _init(target)

for statement in tree:

with hq as temp_tree:

def _func ():

try:

ast_literal[statement]

ast_literal[_state(target , State.SUCCEEDED)]

except Exception as e:

unhygienic[_exceptions ]. append(e)

new_tree.append(temp_tree)

_thread(new_tree)

_join(new_tree)

new_tree.append(_state(target , State.FAILED))

_exceptions(new_tree , args)

return _block(new_tree)

The macro pursue combines the macros par and try_all. It sets the state to State

.SUCCEEDED if an instruction was executed successfully and to state.FAILED if one
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failed.

@macros.block

def pursue(tree , target , args , **kw):

new_tree = _init(target)

for statement in tree:

with hq as temp_tree:

def _func ():

try:

ast_literal[statement]

ast_literal[_state(target , State.SUCCEEDED)]

except Exception as e:

ast_literal[_state(target , State.FAILED)]

unhygienic[_exceptions ]. append(e)

new_tree.append(temp_tree)

_thread(new_tree)

_join(new_tree)

_exceptions(new_tree , args)

return _block(new_tree)

Our last macro, failure_handling, first checks if a parameter has been passed. If
not, the variable in which the arguments are stored is assigned a new list with a
negative value as the only element. So this negative value is the default value for
our parameter, which is optional. A variable _retries is created and assigned a
fluent with the value 0 to it. This is the counter for the already performed attempts
to execute the passed code. Then a function retry is defined which checks whether
the number of attempts is limited by a positive number passed as a parameter. If
this is the case, it is checked whether the counter has reached this number. If so, it
will be interrupted at this point. Otherwise, the counter is incremented and the code
is executed. The function is then called once to start the process.
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@macros.block

def failure_handling(tree , args , **kw):

if len(args) == 0:

args = [q[-1]]

with hq as new_tree:

_retries = Fluent (0)

def retry ():

if ast_literal[args [0]] >= 0 and _retries.get_value ()

> ast_literal[args [0]]:

return

_retries.set_value(_retries.get_value () + 1)

ast_literal[tree]

retry ()

return _block(new_tree)

3.3 Symbolic Plan Parametrization Author: Dustin AUGSTEN

For a control program to be as general and flexible as possible, one should make
decisions based on parameters such as the current location of the robot. Designators
make it easy to describe motions as well as locations and objects as key-value pairs.
The following describes a round object.

[('shape', 'round')]

More key-value pairs allow the round object to be further limited. For example, we
can also define that it must be yellow.

[('shape', 'round'), ('color', 'yellow ')]

We further limit the object that it must be at the location loc. In this case, loc itself
could be a designator that describes the location.

[('shape', 'round'), ('color', 'yellow '), ('at', loc)]

Basically we limit the possible solutions of a designator by each key-value pair a
little further. In the first example, the designer describes each round object, in the last
example it describes round objects that are also yellow and at the given location. We
assume that loc is also a designator and, thus, describes several possible locations
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that meet all properties. Designators, thus, receive properties, which are defined by
constraints, and can be evaluated, so that either no, exactly one or several solutions
are returned.

3.3.1 Designator Concepts Author: Andy AUGSTEN

In the Lisp implementation CRAM, there are various types of designators, these
being Motion Designators, Object Designators and Location Designators. For our
purposes, we have used and implemented only one type of designator, the Motion
Designator to describe motions. Although one would use Object Designators to de-
scribe objects and Location Designators to describe locations, the different types of
designators are similar in many of their properties. For this reason, there is the su-
perclass Designator, from which in our case MotionDesignator inherits.

Below are methods of the Designator class.

equate: When a designator is initialized, its properties cannot be changed anymore,
and if a designator has calculated a solution, it should not change either. If two
designators describing the same entity provide a different solution, then two des-
ignators must be created, which can then be equated by the equate function. Two
equated designators always describe the same entity. This way a chain of equated
designators can be built to track the changes of a designator over time.

equal: The equal function returns True if two designators are the same and thus
describes the same entity, otherwise False.

first: This function returns the first ancestor in the chain of equated designators, id
est the beginning of the equated chain.

current: This one returns the most recent designator, this being the last one equated
to the current designator or one of its equated designators, id est the end of the
equated chain.

copy: Calling this function creates a new designator that has the same properties.
Additional properties, which are then joined, can be passed as parameter. The trans-
ferred properties are dominant which means if their key already exists, the values
are overwritten.

make_effective: This function can be used to manually create an effective designa-
tor of the same type. In general, a designator becomes an effective one by referenc-
ing. An effective designator describes a low-level data structure that corresponds
to a specific entity in the world. Id est an abstract object designator becomes a real
object from the environment, or a location designator turns into a 3D pose. Proper-
ties can be passed as parameter to the function. If none are given, the properties of
the current designator are taken over. The second parameter is the low-level data
structure, the default value is None. The third parameter can be the timestamp for
creating the reference, the default value is the current timestamp.

newest_effective: The newest_effective function returns the latest effective des-
ignator in the chain of equated designators.
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prop_value: Calling this function returns the value of the passed key.

check_constraints: This function expects properties as parameter and returns True
if they are satisfied, otherwise False. The properties are passed as a list. Each ele-
ment can be a tuple, in which case the first value is the key of a property that must
match the second value. If the element is not a tuple, it simply corresponds to the
key of a property, which must not be None.

The following example checks whether the 'shape' property has the value 'round'

and if the 'color' property is given.

d = Designator ([('shape', 'round'), ('color', 'yellow '), ('

at', location)])

d.check_constraints ([('shape', 'round'), 'color']) # True

make_dictionary: The function make_dictionary returns the given properties as a
dictionary. The properties to be considered are transferred as a list. If an element of
the list is a tuple, a property with the first value as a key and the second value as
its value is added to the dictionary. If the element is not a tuple, then the property,
which has the element as a key, is added.

In the following example we apply the function to our designator d.

d.make_dictionary (['shape', ('color', 'red'), ('foo', 'bar'

), 'foobar '])

As a result we get:

{'shape': 'round', 'color': 'red', 'foo': 'bar', 'foobar ':

None}

Implementation

When you create a designator, its properties are passed as parameter. Optionally,
a parent designator can be handed over, which is then equated with this. Apart
from the properties, all instance variables are assigned their default values. Only
the variable timestamp should be accessible, for all others there are corresponding
functions.
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class Designator:

def __init__(self , properties , parent = None):

self._mutex = Lock()

self._parent = None

self._successor = None

self._effective = False

self._data = None

self.timestamp = None

self._properties = properties

if parent is not None:

self.equate(parent)

The function equate first checks whether the passed parent designator is already
equated with this designator. If so, it will stop here because there is nothing to do.
Otherwise, the two designators will be equated.

def equate(self , parent):

if self.equal(parent):

return

youngest_parent = parent.current ()

first_parent = parent.first ()

if self._parent is not None:

first_parent._parent = self._parent

first_parent._parent._successor = first_parent

self._parent = youngest_parent

youngest_parent._successor = self

equal checks whether the designator is equal to the given one. Two designators are
equal if their first ancestors are identical.

def equal(self , other):

return other.first () is self.first ()

The functions first and current return the first ancestor or the most recent equiva-
lent designator. For this purpose, it is checked whether the parent designator or the
child designator is None. If so, the current designator will be returned. Otherwise,
the respective function is called recursively to the parent or child designator.
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def first(self):

if self._parent is None:

return self

return self._parent.first ()

def current(self):

if self._successor is None:

return self

return self._successor.current ()

copy copies the properties of the designator and merges them with the submitted
ones. If necessary, properties are overwritten here, with the new ones being domi-
nant. A new designator of the same class is created, passing the assembled proper-
ties to the constructor.

def copy(self , new_properties = None):

properties = self._properties.copy()

if new_properties is not None:

for key , value in new_properties:

replaced = False

for i in range(len(properties)):

k, v = properties[i]

if k == key:

properties[i] = (key , value)

replaced = True

if not replaced:

properties.append ((key , value))

return self.__class__(properties)

The make_effective function checks if the passed properties are None. If so, the
properties of the current designator are applied. A new designator of the same type
is created, it is marked as effective and its low-level data structure is set to the one
passed. If a timestamp has been passed, this is also set, otherwise the current one
will be used. The newly created designator is then returned.
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def make_effective(self , properties = None , data = None ,

timestamp = None):

if properties is None:

properties = self._properties

desig = self.__class__(properties)

desig._effective = True

desig._data = data

if timestamp is None:

desig.timestamp = time()

else:

desig.timestamp = timestamp

return desig

newest_effective defines an internal find_effective function that calls itself re-
cursively, always passing the parent designator to find the latest effective designator.
The current designator is returned if this is None – in that case there is no effective
designator in the chain – or if it is an effective one. The function is first called with
the newest designator in the chain as parameter.

def newest_effective(self):

def find_effective(desig):

if desig is None or desig._effective:

return desig

return find_effective(desig._parent)

return find_effective(self.current ())

The prop_value function iterates over all properties to find those with the correct
key and return its value. If no property was found, None is returned.

def prop_value(self , key):

for k, v in self._properties:

if k == key:

return v

return None

To check the passed properties, the function check_constraints iterates over them.
For each element it is checked if it is a tuple. If so, it checks if the value does not
match to return False in this case. If it is not a tuple, it checks if the value is None

and then returns False. Otherwise, all properties are met and True is returned.
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def check_constraints(self , properties):

for prop in properties:

if type(prop) == tuple:

key , value = prop

if self.prop_value(key) != value:

return False

else:

if self.prop_value(prop) is None:

return False

return True

make_dictionary creates a new Dictionary object and iterates over the passed prop-
erties. If an element is a tuple, it is added to the dictionary as a property. If it is not a
tuple, a new property with the item as the key and the value returned by prop_value

as the value is added. The dictionary is then returned.

def make_dictionary(self , properties):

dictionary = {}

for prop in properties:

if type(prop) == tuple:

key , value = prop

dictionary[key] = value

else:

dictionary[prop] = self.prop_value(prop)

return dictionary

3.3.2 Designator Resolution Author: Dustin AUGSTEN

The API provided by the Designator class is the same for all types of Designators.
But resolving a designator may differ depending on the type, so this must be imple-
mented by the user. For this purpose, the class Designator can be inherited from to
override the functions which are responsible for the resolution.

The reference function should dereference a designator and return the low-level
data structure or throw a DesignatorError if it is not an effective designator. So
that the user does not have to worry about thread safety and because the variable
_effective must always be set to True and _timestamp – if not yet set – to the cur-
rent timestamp, there is a second function _reference. reference calls this function,
so this one can be overridden instead.
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def _reference(self):

pass

def reference(self):

with self._mutex:

ret = self._reference ()

self._effective = True

if self.timestamp is None:

self.timestamp = time()

return ret

next_solution should return a second solution for an effective designator or None
if none exists. However, this is not meant to return the designator’s low-level data
structure, but a new designator with the same characteristics as the source designa-
tor, because they both describe the same entity.

def next_solution(self):

pass

To return a list of all solutions as a low-level data structure, the API also provides a
solutions function. This uses the functions to be overridden by the user and is thus
the same for all types of designators and therefore does not need to be overwritten.
As optional parameter the function can be given a value and if this is not None (ba-
sically this is a boolean value, but here we check to None to get closer to the Lisp
implementation) instead of the current designator the first in the chain of equated
designators is used. The function returns a generator that calls the reference func-
tion within a loop, returns the return value and then calls next_solution until the
latter returns None.
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def solutions(self , from_root = None):

if from_root is not None:

desig = self.first ()

else:

desig = self

def generator(desig):

while desig is not None:

try:

yield desig.reference ()

except DesignatorError:

pass

desig = desig.next_solution ()

return generator(desig)

DesignatorError is a simple class inheriting from Exception.

class DesignatorError(Exception):

def __init__(self , *args , ** kwargs):

Exception.__init__(self , *args , ** kwargs)

Motion Designators

The following sections discuss the implementation of the MotionDesignator class.
A motion designator is a type of designator that describes motions. The class pro-
vides a public instance variable resolvers. This is a list in which the user must store
the resolvers to be used by the class. Resolvers are functions that take a designator
as a parameter and return a list of solutions. A solution may itself be a generator or
a generator function that generates solutions.

class MotionDesignator(Designator):

resolvers = []

During initialization, two variables _solutions and _index are defined and initially
assigned default values. _solutions gets assigned a generator list in the function
_reference. This is a list based on a generator. The generator will generate the solu-
tions, the list stores them so that they can be accessed again. _index stores the index
of the current solution because a call to the reference function should always return
the same. For a new designator returned by calling the function next_solution, the
value is incremented.
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def __init__(self , properties , parent = None):

self._solutions = None

self._index = 0

Designator.__init__(self , properties , parent)

_reference checks if _solutions has already been assigned a value to. If not, a
generator is defined. This traverses through all resolvers, executes them and then
traverses through the returned solutions. If it is a generator function, it is called to
get the generator. If the solution is a generator, a loop will be run in which the next
element of the generator is always returned. Otherwise, the current element will
be returned as a solution. The generator generated by the function _reference is
packaged as a generator list and stored in _solutions. If a low-level data structure
already exists, it will be returned. Otherwise, the element at position _index in the
generator list is stored in _data and returned. If an error occurs because the list is
empty, it is not an effective designator and a DesignatorError is thrown.

def _reference(self):

if self._solutions is None:

def generator ():

for resolver in MotionDesignator.resolvers:

for solution in resolver(self):

if isgeneratorfunction(solution):

solution = solution ()

if isgenerator(solution):

while True:

try:

yield next(solution)

except StopIteration:

break

else:

yield solution

self._solutions = GeneratorList(generator)

if self._data is not None:

return self._data

try:

self._data = self._solutions.get(self._index)

return self._data

except StopIteration:

raise DesignatorError('Cannot␣resolve␣motion␣

designator ')

The function next_solution calls the function reference to ensure that _solutions
is set. If an error occurs, it is intercepted and ignored because next_solution should
not throw an error when called on a non-effective designator. This would then do
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the function reference later when it is called again. It is checked if there is another
solution in _solutions. If so, a new designator with the same properties is created
and returned. The value for the variable _solutions is adopted, that of _index is
incremented. If no other solution exists, None is returned.

def next_solution(self):

try:

self.reference ()

except DesignatorError:

pass

if self._solutions.has(self._index + 1):

desig = MotionDesignator(self._properties , self)

desig._solutions = self._solutions

desig._index = self._index + 1

return desig

return None

GeneratorList is a class implemented by us and added the helper module. When
initializing, a generator or a generator function is passed as a parameter. If it is a gen-
erator function, it is called to get the generator. The generator is stored in the variable
_generator. A list for the generated elements is created and stored in _generated.

class GeneratorList:

def __init__(self , generator):

if isgeneratorfunction(generator):

self._generator = generator ()

else:

self._generator = generator

self._generated = []

The get function is passed an index. It will loop through as long as the number of
generated elements is less than or equal to the index. Within the loop, an element is
always generated and stored in _generated. Then the element at the given position
is returned.

def get(self , index = 0):

while len(self._generated) <= index:

self._generated.append(next(self._generator))

return self._generated[index]

The has function can be used to check if there is an element at a given position. The
position is passed to the function as a parameter. The position is then passed to the
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get function. If there was no error, the element exists and True is returned, otherwise
False.

def has(self , index):

try:

self.get(index)

return True

except StopIteration:

return False

3.4 Process Modules Author: Andy AUGSTEN

One of the most important features that PyCRAM offers is to abstract from the actual
hardware of the robot when implementing control programs. To this end, plans are
designed using designators, and these are executed by process modules that com-
municate with the robot’s hardware. Thus, plans can be implemented very generally
and only process modules corresponding to the different types of robots that com-
municate with the respective hardware need to be implemented.

Any number of process modules covering different areas can be implemented for
each robot. Thus, e.g. for the PR2, a left arm process module and a right arm process
module are implemented so that they can work in parallel. A robot with only one
arm can handle the provided designator differently, i.e. in this case ignore which
arm the motion should be executed with and just use the same plan.

3.4.1 The PyCRAM Process Module Interface Author: Dustin AUGSTEN

The class ProcessModule provides a variable resolvers. This is a list in which all
resolvers must be stored. Resolvers for process modules are functions that receive a
designator as a parameter and check its properties to select a suitable process mod-
ule and return it, or None if none exists.

class ProcessModule:

resolvers = []

The function perform receives a designator as parameter. It traverses through all
resolvers and tries to find a process module. If a module is found, the execute func-
tion is called on it.

def perform(designator):

for resolver in ProcessModule.resolvers:

pm = resolver(designator)

if pm is not None:

return pm.execute(designator)
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When initializing a process module, the two variables _running and _designators

are created. _running is a fluent that indicates whether the process module is cur-
rently running and thus processing a designator. _designators is a list in which all
designators still to be processed are stored.

def __init__(self):

self._running = Fluent(False)

self._designators = []

execute is a function that receives a designator as a parameter and should process
it. To do this, the designator is stored in the _designators list and the wait_for

function is called on the fluent network which results from comparing the fluent
_running with the value False. That means if the process module is busy it will
wait for it to be available again. If the thread is not currently blocked, the value
of _running will be set to True. Then, the designator, which is at the first position
in the _designators list, is passed to the _execute function and removed from the
list. Then the value of _running is set to False again. If a new process module is
created, then it must inherit from the class ProcessModule and override the function
_execute to implement the communication with the hardware.

def _execute(self , designator):

pass

def execute(self , designator):

self._designators.append(designator)

(self._running == False).wait_for ()

self._running.set_value(True)

designator = self._designators [0]

ret = self._execute(designator)

self._designators.remove(designator)

self._running.set_value(False)

return ret

3.4.2 Synchronous and Asynchronous Execution Author: Andy AUGSTEN

A process module is always responsible for one component of a robot and, thus, syn-
chronous. An arm, for example, can only perform one movement at a time. If you try
to perform several actions at the same time, they will be accumulated in a queue and
executed one after the other. But if two arms are available to the robot, it is possible
for one arm to execute a movement asynchronously to the other arm. So, to execute
something asynchronously, you simply have to implement several process modules.
In theory, it would also be possible to define multiple process modules that can be
executed asynchronously to each other for one component, but in practice this does
not always make sense.

The queue in which actions are accumulated is implemented as a simple list to which
all designators, which are passed to the execute function, get added. The func-
tion calls wait_for on a fluent to block execution if it is already running in another
thread. As soon as this specific thread finished, the function claims execution for the
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current thread, fetches the first designator in the list, processes it, removes it from
the list and then releases execution again.
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Chapter 4

Application

This chapter is all about the usage of PyCRAM which is explained and shown here
using a concrete example application. The first part of this chapter will explain the
example application running on the PR2 and the used concepts. After that part
there is a part explaining how to set up the PyCRAM environment as this, due to the
limited Python 3 support of ROS, does not work out of the box.

4.1 Demonstration Scenario Author: Andy AUGSTEN

In order to test and verify PyCRAM, we wanted to implement an application that
uses all of the CRAM concepts that were implemented in PyCRAM at this point. We
decided to use the PR2 for this scenario and keep the task as simple as possible yet
include all concepts.
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FIGURE 4.1: An activity diagram of the demo application. The red
outlined activities are the PyCRAM language expressions that were

used in our application.

In our example scenario the PR2 executes fetch and place tasks in a laboratory test
kitchen which is shown in Figure 4.2 (p. 57). Our application, which can be seen as
activity diagram in Figure 4.1 (p. 56), will first send the PR2 to a default start position
at which the demo will start. Starting at this point the robot will always be looking
at its goals simultaneously while doing its job. For example, if the robot is moving
to position p0 it will look at p0 while driving towards it. If the robot is trying to fetch
an item at position p1 it will look at position p1 while trying to fetch it and so on.
This behavior is illustrated in Figure 4.3 (p. 57).
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FIGURE 4.2: The laboratory test kitchen.

FIGURE 4.3: The PR2 simultaneously moving and looking towards
its goal.
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FIGURE 4.5: The PR2 placing the item.

PR2 has a number of interfaces, implemented as ROS actions, for the user to control
it. These interfaces are used in the control.py file which is explained in more detail
below. There is an interface to set the height of the torso, which expects a value for
it’s height. There are interfaces with which the programmer can set the gripper and
the arms, which expect a value for how far the gripper should be opened or angles
for the arm joints of the robot. Another interface can control the head and expects
a position at which the cameras will point at. And of course there is also an inter-
face to move the robot around, which expects a new position and an orientation the
robot should face towards. But there are also interfaces with which the programmer
can track positions and values of the robot by subscribing to these interfaces and
handling callbacks or interfaces with which actions can be cancelled.

control.py

This file is handling all the controls for the PR2 robot.

The imports below are required to use the signal and sys packages which are used
to track whether there was an interrupt signal for the running process and to stop
all control actions in such a case.

import signal

import sys

Aside from actionlib and rospy which are used to handle message communication
and actions the other imports are just different message types that were used.
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import actionlib

import rospy

from geometry_msgs.msg import PoseWithCovarianceStamped

from move_base_msgs.msg import MoveBaseAction , MoveBaseGoal

from pr2_controllers_msgs.msg import ...

from trajectory_msgs.msg import JointTrajectoryPoint

The signal package includes the signal function which tells the interpreter what
function to call on given signal. In our case exit is executed when SIGINT is re-
ceived for the running process. Like already mentioned this is important for us to
cancel all running actions on the robot when the process is killed.

signal.signal(signal.SIGINT , exit)

Bellow is the initialization part. The robot is receiving messages for each of its parts
like the arms or the grippers and acts accordingly. The actionlib library provides a
simple client that can be assigned to ROS topics to send the required messages. We
have eight action clients to communicate with the robot’s parts, which are the move,
head, left and right arm, left and right gripper, torso and sound client.

move_client = actionlib.SimpleActionClient("/

nav_pcontroller/move_base", MoveBaseAction)

move_client.wait_for_server ()

head_client = actionlib.SimpleActionClient("/

head_traj_controller/point_head_action", PointHeadAction

)

head_client.wait_for_server ()

...

Following is the function that is executed when the process receives a SIGINT. This
function will tell all clients that were created earlier to cancel all goals, which basi-
cally are actions caused by the messages received for the client, and terminate. As
a result, if the user interrupts the robot’s program, all the robot actions will be can-
celled and the robot will stop moving.

def exit(sig , frame):

move_client.cancel_all_goals ()

head_client.cancel_all_goals ()

...

sys.exit()
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The following two functions are using the rospy library to subscribe to given top-
ics, receive a message of given type and save a value of that message to the given
parameter fluent fl. Since the application code is robot-independent and we do not
know how many grippers a robot has, the gripper value for subscribe_gripper is a
number instead of l or r for left or right.

def subscribe_pose(fl):

rospy.Subscriber('/amcl_pose ', PoseWithCovarianceStamped ,

lambda msg: fl.set_value(msg.pose))

def subscribe_gripper(gripper , fl):

rospy.Subscriber('{} _gripper_controller/state'.format('l'

if gripper == '0' else 'r'), JointControllerState ,

lambda msg: fl.set_value(msg.process_value))

The function move_to will create a new MoveBaseGoal message, adapt the settings of
the pose parameter as goal and send the message to the robot using the move_client
that was created earlier using actionlib. The parameter wait is True by default
and defines whether the function should wait for the goal to be reached or not. In
addition the user can define the frame the robot is supposed to do the movement
in. By default that frame is "base_footprint". For example if the frame is set to
"base_footprint" the point of origin is at the robot’s position with the x-axis facing
the way the robot faces while the frame "map" has it’s origin at the origin of the map
the robot is performing in, in our case the kitchen.
The function cancel_movementwill call the already defined function cancel_all_goals

on the move_client and stop the current movement of the robot.

def move_to(pose , wait=True , frame="base_footprint"):

msg = MoveBaseGoal ()

msg.target_pose.header.frame_id = frame

msg.target_pose.pose.position.x = pose.position.x

...

move_client.send_goal(msg)

if wait:

move_client.wait_for_result ()

def cancel_movement ():

move_client.cancel_all_goals ()

Just like the function move_to, the code below creates a new message and sends it to
the robot using the appropriate action client after adapting the x, y and z coordinates.
The parameters wait and frame serve the same purpose.
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def point_head_to(x, y, z, wait=True , frame="base_footprint

"):

msg = PointHeadGoal ()

msg.target.header.frame_id = frame

msg.target.point.x = x

msg.target.point.y = y

msg.target.point.z = z

msg.max_velocity = 1.0

head_client.send_goal(msg)

if wait:

head_client.wait_for_result ()

The arm of the PR2 can be controlled by changing the values of the arm joints. Each
arm joint has a motor which can be controlled by changing the joint value for that
motor. The motor will then move that part of the arm to a specific angle. Altogether
the PR2 has seven different arm joints:

shoulder pan joint - moves the shoulder of the robot back and forth
shoulder lift joint - moves the shoulder of the robot up and down
upper arm roll joint - turns the upper arm of the robot
elbow flex joint - stretches or bows the elbow of the robot
forearm roll joint - turns the forearm of the robot
wrist flex joint - moves the wrist towards the body of the robot or away

from it
wrist roll joint - turns the wrist of the robot

Again a new message of type JointTrajectoryGoal is created to which a few ad-
justments are made. The parameter arm should be either l or r for left or right and
is parsed into the joint_names for the message to be sent and the parameter posi-
tions is an array containing the positions for the named joints in the exact same order.

The function set_gripper is analog.
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def set_arm_joints(arm , positions , wait=True):

msg = JointTrajectoryGoal ()

msg.trajectory.joint_names = ['{} _shoulder_pan_joint '.

format(arm), '{} _shoulder_lift_joint '.format(arm), '{}

_upper_arm_roll_joint '.format(arm), '{}

_elbow_flex_joint '.format(arm), '{} _forearm_roll_joint

'.format(arm), '{} _wrist_flex_joint '.format(arm), '{}

_wrist_roll_joint '.format(arm)]

msg.trajectory.points = [JointTrajectoryPoint ()]

msg.trajectory.points [0]. positions = positions

msg.trajectory.points [0]. velocities = [0, 0, 0, 0, 0, 0,

0]

if arm.lower () == 'l':

l_arm_client.send_goal(msg)

if wait:

l_arm_client.wait_for_result ()

elif arm.lower () == 'r':

r_arm_client.send_goal(msg)

if wait:

r_arm_client.wait_for_result ()

def set_gripper(gripper , pos , wait=True , max_effort =25):

msg = Pr2GripperCommandGoal ()

msg.command.position = pos

msg.command.max_effort = max_effort

if gripper.lower () == 'l':

l_gripper_client.send_goal(msg)

if wait:

l_gripper_client.wait_for_result ()

elif gripper.lower () == 'r':

r_gripper_client.send_goal(msg)

if wait:

r_gripper_client.wait_for_result ()

The remaining functions are analog to the function move_to.

run.py

Like already mentioned in the foundations chapter about MacroPy, it is necessary to
import MacroPy in seperate file to make it work. Since PyCRAM is using MacroPy it
is necessary here too if one wants to use macros defined in PyCRAM, hence, run.py
will import macropy and demo, which contains the code for our demo application.
One needs to run run.py, i.e. this is the entry point of the program to start the demo
application.
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#!/usr/bin/env python

import macropy.activate

import demo

4.2 Used Concepts Author: Dustin AUGSTEN

Although control.py and run.py are important for the application, the following three
files demonstrate the concepts of PyCRAM. This chapter will explain how we used
designators, process modules and the language expressions of PyCRAM.

4.2.1 Designators

The following examples will show how to properly define motion designators in
PyCRAM using Python code.

motion_designators.py

First of all it is necessary to import MotionDesignator.

from pycram.designator import MotionDesignator

In the next step, a function is created that will serve as a resolver for given designa-
tor desig. A resolver is a function that takes a designator as a parameter and returns
a list of solutions. For example, the resolver pr2_motion_designators below would
return a list of solutions containing [('cmd', 'set_gripper'), ('position', 1),

('wait', True), ('max_effort', 25)] for the designator MotionDesignator([(
'type', 'setting_gripper'), ('gripper', '0'), ('position', 1)]).

def pr2_motion_designators(desig):

solutions = []

The resolver function pr2_motion_designator must contain a block as shown below
for each different "type" of designator there is. The type 'moving' for example has
four arguments. While the arguments 'wait' and 'frame' are optional, the argu-
ments for 'type' and 'pose' are required. The expression desig.check_constraints

(props) will check if the arguments defined in props are set. For example desig.

check_constraints([('frame', 'map')]) is true only if the argument 'frame' is
set to 'map' while desig.check_constraints(['frame']) is true if 'frame' is set at
all, aside from its actual value. Using this one can easily create such a nested block
of code for every type, check for the set arguments and adapt the values of the ar-
guments or use default ones. In line 9 the values of all arguments, aside from type,
which is replaced with a 'cmd' argument, are adopted and appended to solutions
while in line 11 the value for 'frame' was set to a custom defined value since 'frame
' is not set at this point. It is not necessary to replace type with 'cmd' but depends
on what is checked in process modules. We check in process modules for 'cmd' so
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we did it this way. Finally the resolver will return the solutions list.

5 if desig.check_constraints ([('type', 'moving '), 'pose']):

6 if desig.check_constraints (['wait']):

7 if desig.check_constraints (['frame']):

8 solutions.append(desig.make_dictionary ([('cmd', '

move'), 'pose', 'wait', 'frame']))

9
10 solutions.append(desig.make_dictionary ([('cmd', 'move

'), 'pose', 'wait', ('frame', 'base_footprint ')]))

11
12 if desig.check_constraints (['frame']):

13 solutions.append(desig.make_dictionary ([('cmd', 'move

'), 'pose', ('wait', True), 'frame']))

14
15 solutions.append(desig.make_dictionary ([('cmd', 'move')

, 'pose', ('wait', True), ('frame', 'base_footprint '

)]))

Just like it is done for the designator of type moving such a block has to be defined
for each type of designator the programmer wants to use.

if desig.check_constraints ([('type', '

setting_arm_joints '), 'positions ']):

if desig.check_constraints (['wait']):

solutions.append(desig.make_dictionary ([('cmd', '

set_arm_joints '), 'positions ', 'wait']))

solutions.append(desig.make_dictionary ([('cmd', '

set_arm_joints '), 'positions ', ('wait', True)]))

...

return solutions

And the last step is to append all resolvers to MotionDesignator which in our case
is just the defined pr2_motion_designators function.

MotionDesignator.resolvers.append(pr2_motion_designators)

4.2.2 Process Modules

The motion designators we are using in our demo application are designators which
are supposed to perform a motion. This is done in combination with process mod-
ules. Here we are going to show how we used the process modules of PyCRAM for
our demo application.
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process_modules.py

Since the process modules are going to perform motion or control actions in our case
it is necessary to import our control functions and, of course, ProcessModule.

import control as c

from pycram.process_module import ProcessModule

The next step is to define a process module for each independent part of the robot.
This means that if we want to use, for example, two arms simultaneously we have
to create a process module for each of the two arms because a process module will
always block until it has finished its action which would prevent simultaneous arm
movements if there was one process module for both arms together.
A process module is defined by defining a class that inherits from ProcessModule

and overwrites its _execute function, which tells the process module what to do.
The programmer can use the given designator and get the parsed solution for it,
which was done in motion_designators.py earlier, by calling the reference function
in the _execute function. This was also done in the code block below and then the
'cmd' argument that was replaced earlier in the motion_designators.py file is checked.
Then the appropriate function in control.py is simply called using the values given in
the designator.

class Pr2Navigation(ProcessModule):

def _execute(self , designator):

solution = designator.reference ()

if solution['cmd'] == 'move':

c.move_to(solution['pose'], solution['wait'],

solution['frame'])

Like already mentioned, the same is done for every other independent part of the
robot.
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class Pr2Head(ProcessModule):

def _execute(self , designator):

solution = designator.reference ()

if solution['cmd'] == 'point_head ':

coordinates = solution['coordinates ']

c.point_head_to(coordinates [0], coordinates [1],

coordinates [2], solution['wait'], solution['frame'

])

class Pr2ArmL(ProcessModule):

def _execute(self , designator):

solution = designator.reference ()

if solution['cmd'] == 'set_arm_joints ':

c.set_arm_joints('l', solution['positions '], solution

['wait'])

...

After all process modules have been defined an instance for each part need to be
created since they basically are just classes and are useless without instancing them.
The created instances are used in the process module resolver function that yet has
to come.

pr2_navigation = Pr2Navigation ()

pr2_head = Pr2Head ()

pr2_arm_l = Pr2ArmL ()

...

Now, just like it was done for the motion designators, the final step is to create re-
solver functions, in our case only one for the PR2, and add them to the resolvers of
ProcessModule. Since we do not need any other arguments other than the type, we
can use the given designator right away without getting its solution by calling the
reference function. Each type is checked and the appropriate process module in-
stance is returned. For example, a moving motion is dispatched to the pr2_navigation
process module, setting the values for the arm joints to the pr2_arm_l or pr2_arm_r
process module, depending on the given arm argument and so on. In our code the
subscribing type designators are always performed synchronously, which is why
they share the same process module while all other designator types are asynchronous.
That is because we only need to subscribe to the PR2’s position and the gripper’s po-
sition once at the beginning of the application code and does not need to be done in
parallel.



68 Chapter 4. Application

def available_pr2_process_modules(desig):

if desig.check_constraints ([('type', 'moving ')]):

return pr2_navigation

if desig.check_constraints ([('type', 'pointing_head ')]):

return pr2_head

if desig.check_constraints ([('type', 'setting_arm_joints '

)]):

if desig.check_constraints ([('arm', '0')]):

return pr2_arm_l

if desig.check_constraints ([('arm', '1')]):

return pr2_arm_r

...

ProcessModule.resolvers.append(

available_pr2_process_modules)

4.2.3 Language Expressions

The final step for our demo application is the demo itself, which is all included in
the demo.py file. Here all the concepts of PyCRAM are put to use including the de-
fined motion designators, process modules, fluents and the language expressions
failure_handling, par, seq, try_in_order, wait_for and whenever. Although pursue

was not explicitly used in this demo it works the same as par and was tested multi-
ple times during the development.

demo.py

Below are all the dependencies that are used. It is really important to import macros
from fluent and language for all the functions that use MacroPy to work which are
nearly all language expressions of PyCRAM including whenever of fluents.

import math

import motion_designators

import process_modules

import rospy

from geometry_msgs.msg import Pose

from pycram.designator import MotionDesignator

from pycram.fluent import macros , Fluent , whenever

from pycram.language import macros , failure_handling , par ,

seq , State , try_in_order

from pycram.process_module import ProcessModule
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At some parts of our code it was important to track the robot and the gripper po-
sitions, therefore we created fluents for these positions whose values are frequently
updated.

pose = Fluent ()

r_gripper_state = Fluent ()

A helper function will reset the robot and its parts to default positions upon demo
launch. The values for the positions were gathered beforehand. This is also the first
time a language expression, namely par, was used in order to move all parts to their
start position simultaneously. The language expression par, just like most of them,
returns a state fluent which can hold the value SUCCEEDED or FAILED to describe the
macro execution status. Since it is a fluent wait_for can be used on it which will
block until the value of state has been set. This is after par has finished and all
start positions are set. Afterwards the robot base will move to its start position. The
reason why the movement is not done also within par is simply to prevent the robot
hitting anything with its parts while moving within the kitchen.

def reset_robot ():

with par as state:

ProcessModule.perform(MotionDesignator ([('type', '

setting_gripper '), ('gripper ', '0'), ('position ', 1)

]))

ProcessModule.perform(MotionDesignator ([('type', '

setting_gripper '), ('gripper ', '1'), ('position ', 1)

]))

ProcessModule.perform(MotionDesignator ([('type', '

setting_arm_joints '), ('arm', '0'), ('positions ',

[...]) ]))

ProcessModule.perform(MotionDesignator ([('type', '

setting_arm_joints '), ('arm', '1'), ('positions ',

[...]) ]))

ProcessModule.perform(MotionDesignator ([('type', '

setting_torso '), ('position ', 0.3)]))

state.wait_for ()

goal = Pose()

goal.orientation.w = 1.0

ProcessModule.perform(MotionDesignator ([('type', 'moving '

), ('pose', goal), ('frame', 'map')]))

Below is where the demo actually starts. A new ROS node is initialized so the com-
munication with ROS and the robot works, the motion designators subscribing_pose
and subscribing_gripper are performed using process modules which will save

the current positions of the robot and the right gripper to the previously created
fluents pose and r_gripper_state and the helper function reset is called to get
the robot to its default starting positions. Moreover two more variables goal and
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look_goal are defined. They will be overwritten several times during the run time.
The variable goal holds the information for the robot’s next goal position in the
kitchen while the variable look_goal, as the name indicates, is the position the robot
is supposed to look at. These two positions were separated because the robot con-
tinuously moves its head to keep looking at set position while moving around and if
the robot would just look at its moving goal it would look either at the ground or the
top when reaching the goal because it would stand on the goal, hence the look_goal
is separated which basically is the position of the object the robot is going to interact
with when reaching the goal.

print('Initializing␣demo ...')

rospy.init_node('demo')

ProcessModule.perform(MotionDesignator ([('type', '

subscribing_pose '), ('fl', pose)]))

ProcessModule.perform(MotionDesignator ([('type', '

subscribing_gripper '), ('gripper ', '1'), ('fl',

r_gripper_state)]))

reset_robot ()

goal = Pose()

look_goal = Pose()

Another helper function is grab_item which will grab an item in front of the set
goal. par is used to move the robot to its goal and simultaneously start grabbing
when getting close enough to the goal. Using Python’s math library we checked if
the distance or value of the hypotenuse towards the goal is less than 10 centimeters.
Since this is done within a while loop combined with a sleep it will be checked
every 0.1 second. Once the condition is fulfilled the robot will start grabbing which
is just a sequence of setting arm joints, gripper positions and leaving the loop. When
the loop has been left and the robot reached its goal we added an additional check
for the gripper’s position. It will be checked if the gripper is opened less than 1

centimeter which indicates in our demo that no item has been grabbed. In this case
an error is raised that can be handled by the function caller. The grab_item function
just shows another possible use case for par.
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def grab_item ():

with par as state:

ProcessModule.perform(MotionDesignator ([('type', '

moving '), ('pose', goal), ('frame', 'map')]))

while True:

p = pose.get_value ().pose.position

if math.hypot(goal.position.x-p.x, goal.position.y-p.

y) < 0.1:

joints1 = ...

joints2 = ...

joints3 = ...

ProcessModule.perform(MotionDesignator ([('type', '

setting_arm_joints '), ('arm', '1'), ('positions '

, joints1)]))

rospy.sleep (3)

ProcessModule.perform(MotionDesignator ([('type', '

setting_arm_joints '), ('arm', '1'), ('positions '

, joints2)]))

rospy.sleep (3)

ProcessModule.perform(MotionDesignator ([('type', '

setting_gripper '), ('gripper ', '1'), ('position '

, 0)]))

rospy.sleep (3)

ProcessModule.perform(MotionDesignator ([('type', '

setting_arm_joints '), ('arm', '1'), ('positions '

, joints3)]))

break

rospy.sleep (0.1)

if r_gripper_state.get_value () < 0.01:

ProcessModule.perform(MotionDesignator ([('type', '

setting_gripper '), ('gripper ', '1'), ('position ', 1)

]))

raise

The next function was just created to make the code look cleaner. It is just a sequence
of setting arm joints and gripper positions to predefined values. This function will
open the gripper in front of the robot.
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def place_item ():

joints1 = ...

joints2 = ...

ProcessModule.perform(MotionDesignator ([('type', '

setting_arm_joints '), ('arm', '1'), ('positions ',

joints1)]))

rospy.sleep (3)

ProcessModule.perform(MotionDesignator ([('type', '

setting_gripper '), ('gripper ', '1'), ('position ', 1)])

)

rospy.sleep (3)

ProcessModule.perform(MotionDesignator ([('type', '

setting_arm_joints '), ('arm', '1'), ('positions ',

joints2)]))

At this point all variables have been initialized, the robot has been reset and helper
functions are defined.

As written above, the robot should always look towards a set position, while per-
forming any other actions. This was done using par again. While on the one hand
the robot will execute a sequence of code for the demo on the other hand it will keep
moving its head. In par we used the language expressions seq for the first part and
the expression whenever for the moving head part. whenever is combined with the
robot’s position fluent that was created earlier and a pulse call. This means that
whenever the value of pose has been changed the fluent pose will be pulsed and
the body of whenever will execute. The body of whenever will perform the motion
designator pointing_head towards the look_goal. This is how the robot will always
look at the set position because it keeps moving its head whenever a movement has
been made.

with par as s:

with whenever(pose.pulsed ()):

ProcessModule.perform(MotionDesignator ([('type', '

pointing_head '), ('coordinates ', [look_goal.position

.x, look_goal.position.y, look_goal.position.z]), ('

wait', False), ('frame', 'map')]))

rospy.sleep (0.2)

with seq as s:

The first step of the demo is for the robot to drive to cooker #2 and try to grab an
item. If it fails it will move a little and try again altogether three times. This is
how it was described earlier and how it is done here. Using the language expres-
sion try_in_order this can be easily implemented. It executes given expressions
one after another until one succeeds. We put each grabbing part into an if True

block so the whole grabbing part including setting the positions is handled as one
expression. Else try_in_order would finish after setting goal.position.x already.
Since the helper function grab_item already includes the moving part only setting
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the goals and calling the function is needed in each block. We have defined a num-
ber of fixed poses in the kitchen. These poses are all next to each other at cooker #2
and can be seen in the code snippet below. The robot is trying to grasp an object
from each of these fixed poses and the grab_item function will raise an error if no
item could be grabbed which will set the value of state to FAILED and continue to
the next block. If one block succeeded or there are no more blocks left try_in_order
is left and we check for the value of state. Only if its value is not FAILED an item
has been successfully grabbed and the demo will continue.

with try_in_order as state:

if True:

goal.position.x = 0.1

goal.position.y = -0.6

goal.orientation.z = -0.700573543807

goal.orientation.w = 0.713580205526

look_goal.position.x = 0.1

look_goal.position.y = -1.1

look_goal.position.z = 0.8

grab_item ()

if True:

goal.position.x = -0.2

goal.position.y = -0.6

goal.orientation.z = -0.700573543807

goal.orientation.w = 0.713580205526

look_goal.position.x = -0.2

look_goal.position.y = -1.1

look_goal.position.z = 0.8

grab_item ()

if True:

goal.position.x = 0.4

goal.position.y = -0.6

goal.orientation.z = -0.700573543807

goal.orientation.w = 0.713580205526

look_goal.position.x = 0.4

look_goal.position.y = -1.1

look_goal.position.z = 0.8

grab_item ()

if state.get_value () == State.FAILED:

print('Could␣not␣grab␣any␣item.')

raise
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After successfully grabbing an item the robot should move to cooker #1 and place
the item there. While moving to cooker #1 it should simultaneously check if the item
has been lost, stop in such a case and wait for it to be put back into the gripper.
Again one of the language expressions PyCRAM provides will help to implement
this in just a few lines of code. First of all the goal positions are set and then the ex-
pression failure_handling is used. It provides the functionality of executing code
and catch its exceptions with the option to retry the execution. Using this feature we
send the command to move to cooker #1 and then inside a while loop we check if
the gripper’s position ever changes below 1 centimeter, which again in our demo in-
dicates that the robot is not holding anything. In that case the cancelling_movement
designator is performed and the robot will open its gripper. The user will then see
a request to put the item back into the gripper. After doing so an error is raised to
let the failure_handling expression catch the exception and restart the execution
which will send the robot moving again if the item has been put back in. However,
if the item has not been lost the next check inside the while loop is whether the robot
reached its goal in which case the loop is left and failure_handling as well since
the execution of the code has finished. And last the item is placed on cooker #1 using
the helper function place_item.
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goal.position.x = -0.1

goal.position.y = 1.9

goal.orientation.z = 0.9999981068

goal.orientation.w = 0.00194586635055

look_goal.position.x = -0.6

look_goal.position.y = 1.9

look_goal.position.z = 1.0

with failure_handling:

try:

if r_gripper_state.get_value () > 0.01:

ProcessModule.perform(MotionDesignator ([('type',

'moving '), ('pose', goal), ('wait', False), ('

frame', 'map')]))

while True:

p = pose.get_value ().pose.position

if r_gripper_state.get_value () < 0.01: # if lost

item

ProcessModule.perform(MotionDesignator ([('type'

, 'cancelling_movement ')]))

ProcessModule.perform(MotionDesignator ([('type'

, 'setting_gripper '), ('gripper ', '1'), ('

position ', 1)]))

input('Put␣the␣item␣into␣the␣right␣gripper␣and␣

hit␣[Enter]␣to␣continue.')

ProcessModule.perform(MotionDesignator ([('type'

, 'setting_gripper '), ('gripper ', '1'), ('

position ', 0)]))

raise

elif math.hypot(goal.position.x-p.x, goal.

position.y-p.y) < 0.1:

break

rospy.sleep (0.1)

except:

retry ()

place_item ()

Altogether this is a simple example application that shows how the use of PyCRAM
can ease tasks and how to use PyCRAM.

4.3 Setup Author: Andy AUGSTEN

As PyCRAM is based on Python 3 while ROS and the robotics community work
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with a big extend using Python 2, it was necessary to set up a virtual environment
for Python 3 and ROS usage.

In order to set up a virtual environment for Python and make ROS work with Python
3 a few packages need to be installed. Since we used Ubuntu as operating system
the following shell commands did the job:

$ sudo apt -get install python -pip python3 -pip libbullet -dev

python -virtualenv

The libbullet-dev package is required for the ROS geometry2 package that was used
in this example application. While there are some ROS packages working out of
the box with the virtual Python 3 environment there are also packages that do not.
These packages need to be downloaded, compiled and sourced manually.

A new ROS workspace was set up to which the required packages were pulled.

$ cd $HOME

$ mkdir ros_catkin_ws

$ mkdir ros_catkin_ws/src

$ cd ros_catkin_ws/src

$ git clone https :// github.com/ros/geometry

$ git clone https :// github.com/ros/geometry2

$ git clone https :// gitlab.informatik.uni -bremen.de/

aaugsten/pycram.git

The next step is to finally create the required virtual environment for Python 3 and
activate it.

$ cd $HOME/ros_catkin_ws

$ virtualenv -p /usr/bin/python3 venv

$ source venv/bin/activate

The next step is optional. The activation part needs to be done each time the virtual
environment was deactivated or the machine was rebooted, hence, it is sourced on
boot on our setup.

$ echo source $HOME/ros_catkin_ws/venv/bin/activate >>

$HOME /. bashrc

Now that Python is operating inside the virtual environment some Python packages
need to be installed. These packages will only be installed inside the virtual envi-
ronment. Since the virtual environment is using Python 3 it will install the Python 3
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compatible packages.

$ pip install -U rosdep rosinstall -generator wstool

rosinstall ros -buildfarm rosdistro rospkg pyyaml

catkin_pkg

Finally, the ROS workspace can be recompiled and sourced.

$ cd $HOME/ros_catkin_ws

$ catkin_make

$ source devel/setup.bash

Just like the virtual environment, this also needs to be resourced every time the sys-
tem is booted. This is done automatically on system boot here. Again this is optional
to prevent the need for resourcing the ROS workspace on every system boot.

$ echo $HOME/ros_catkin_ws/devel/setup.bash >> $HOME /.

bashrc

Now ROS is using Python 3 as default Python interpreter and PyCRAM is ready for
use.
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Chapter 5

Conclusion

Nowadays more istitutes than ever before own a robot such as the PR2 which op-
erate in domestic environments such as a household, hence planning and the de-
velopment of control programs for navigation and manipulation is now even more
important. For this purpose CRAM was invented and now with this thesis also Py-
CRAM, a similar implementation for the Python language.

The PyCRAM Plan Language is a domain specific language on top of Python. It
uses the MacroPy library which provides a strong and powerful macro system. With
fluents, which allow to wait for specific changes and which can be combined to net-
works in order to express complex conditions, and the macros it provides, it sup-
ports the user in developing highly concurrent control programs to monitor differ-
ent sensors in parallel without having to set up complex threading structures and
without having to care about synchronization. In addition, the provided language
constructs come with an easy error handling concept which also allows to re-execute
a block when an error occured.

When developing a control program we want it to be as general and flexible as pos-
sible and hence make decisions based on parameters such as the current location
of the robot. To accomplish this there is the designator concept. Designators can
be used to describe motions but also objects and locations as key-value pairs. They
provide resolution algorithms to resolve given parameters. There are different types
of designators which are identical in many of their properties but the algorithm used
for resolving them may differ. One type of designator, the Motion Designator, has
been implemented by us to resolve motions in our demo application.

One of the most important features that PyCRAM offers is to abstract from the actual
hardware of the robot. For this purpose, plans are implemented using designators
and these are then executed by process modules that communicate with the robot’s
hardware. This makes it possible to implement plans in a general way while imple-
menting process modules corresponding to the different types of robots. For exam-
ple, it is possible to define a plan for picking up an object and use it for a robot with
only one arm but also for a robot with two arms. The process module implemented
for a specific robot can decide how to interpret and execute a plan. Process modules
also take care of synchronization. If we execute two motions using the same process
module, it stores both motions in a queue and executes them one after the other. We
usually define one process module for each component of the robot like one for the
left arm and one for the right arm which allows us to execute actions on both arms
asynchronously to each other. Theoretically it is also possible to implement two pro-
cess modules for only one component and, thus, making it possible to execute two
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actions at the same time, however, this does not make sense in most case.

As alternative to Prolog we have defined the two functions check_constraints and
make_dictionary in the Designator class. These can be used by designator resolvers
to easily check properties and create a solution as well as by process modules to
check properties again. This allows to keep resolvers short and clean. Resolvers are
functions that expect a designator to be passed as parameter. Designator resolvers
return a solution, and process module resolvers return a process module.

PyCRAM is split into several modules and the user only has to load whatever is
needed. For example, if the user only wants to use fluents, then (s)he only has to
load the fluent module. If one wants to use macros, however, the program must
run from a bootstrap file.

Besides the implementation of PyCRAM, we also presented a demo application in
our thesis. It demonstrates how the PR2 operates fetch and place tasks in a lab-
oratory test kitchen. During execution, the robot tracks its goals with its gaze. It
monitors if an object has slipped out of the gripper all the time in order to interrupt
and continue when the object is given back. We used this application to verify and
test our implementation and to demonstrate how to use PyCRAM and how it eases
tasks. Besides the macro pursue, which in its implementation is nearly identical
to par and of course has also been tested during the development of PyCRAM, all
other expressions and concepts that our library has to offer have been used in our
application.

5.1 Discussion

In the absence of higher programming languages for autonomous robots, PyCRAM
fills the gap. With the help of PyCRAM it is possible to reduce the length of code
needed for tasks such as picking and placing as presented in our demo application.
We have shown how easy it is to write a concurrent control program with PyCRAM
for such tasks and how to handle errors and work with retrying constructs.

Our research question was to find out whether it is possible to implement a domain
specific language like CRAM in a more widely accepted programming language like
Python. What makes Lisp very interesting for domain specific languages is its strong
macro system, which other languages like C/C++ do not have, or at least they are
not as powerful. One of the main reasons why we have chosen Python is that it is
still one of the most popular programming languages for so many years now and
it is also widely used by the robotics community. Python itself does not support
macros at all, which made implementing a domain specific language not an easy
task. A solution could have been to extend Python and develop a custom interpreter
but it was our goal for PyCRAM to work with the official supported interpreters and
we did not want it to look like a language standing for its own but like a language
on top of another one to adopt its popularity. After lot of researching in order to
find a way to use macros in Python and after trying quite a few libraries, we luckily
found MacroPy, a Python library which adds the ability to code macros in Python 3
in a similar way to how it is done in Lisp.
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Compared to macro definition in CRAM, macro-based implementation in PyCRAM
looks more complex. It is not that easy to work with macros in Python, especially
because there is no official support and thus no official documentation for it. Al-
though there is a documentation for MacroPy, it is just a library and has its limits.
The documentation was not always very clear and the library was not free of bugs.
We actually ran into some troubles, had to trace it down and fork MacroPy to apply
a fix before we integrated it into PyCRAM. But in the end it worked, so we can say
it is possible to implement domain specific languages in Python as well.

While implementing a macro is not that easy, using it is much easier. For PyCRAM
we only used block macros which feel very native using the with ... as ... con-
struct. The only, but not so tragic, disadvantage is that one has to run the program
from a bootstrap file which includes the program’s main module because otherwise
it would not go through the import hook and macros could not be replaced by their
definition. Other concepts of PyCRAM like fluents, designators and process mod-
ules can be used directly from the console though.

During development we often tried to adopt how things are implemented in CRAM,
so that we can later easily compare PyCRAM to the Lisp implementation. Some-
times, however, we implemented concepts in our own way because it seemed easier
or because something felt like it is too much for our purpose, and because we wanted
to stick to Python conventions. When implementing a language on top of Python it
does not make sense to adopt something that feels wrong to a Python programmer.

In CRAM there is subclasses for value fluents and pulsed fluents but we decided to
have only one class here. The only difference is that one can define a behavior to
handle missed pulses which is only taken into consideration by the whenever macro.
So what we did instead is to define a variable _handle_missed and give it a default
value which simply gets overridden when a pulsed fluent is created by calling the
pulsed function. Also, we did not define a subclass for fluent networks as they are
just fluents themselves and we did not implement a function funcall to define own
operators but instead one can simply pass a function, which gets evaluated when
calling the get_value function, as value to the constructor.

The language expressions in PyCRAM and CRAM are the same but they differ in
how they behave. It was not possible for us to make macros return a value but we
were able to store it into a variable passed after the as statement which is pretty
much the same as a return value. Unlike in Lisp, we cannot and do not want to in-
terrupt threads in Python and hence the expressions for parallel execution do not do
that in PyCRAM to stick to conventions that Python programmers are familiar with.
This is also why there is only two possible return values for our expressions, these
being SUCCEEDED and FAILED.

Designators are implemented in PyCRAM very similar to how they are implemented
in CRAM, there is no big difference here. When it comes to resolution, however, we
have added the two functions check_constraints and make_dictionary for that
purpose, while in CRAM there is an approach very similar to Prolog interpretation.
It would have been possible in Python, indeed there is a Python library to build a
bridge between Python and Prolog, but we just did not need it to answer the re-
search question nor did we need it for our demo application and we think that our
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approach is easier to understand for those who have never worked with Prolog be-
fore.

Process modules were only implemented for the purpose of abstracting from the
robot’s hardware and hence are kept very simple in PyCRAM. We have only adopted
the functions execute and perform from the tutorials1 from the official CRAM web-
site as these were all that we needed.

All in all we have accomplished our goal to translate CRAM into Python and can
answer the research question with it being possible to implement a domain specific
language similar to CRAM in another language. It is not exactly the same but it does
fulfill the same purpose. Since our implementation is only a small part of CRAM,
there is still a lot of potential here though.

1http://www.cram-system.org/tutorials. Accessed 01/22/2019.
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